Compare commits

...

31 Commits

Author SHA1 Message Date
Drashna Jaelre
2ec1ab2b35 Update Drashna keymaps (#2145)
* Change overwatch to Gamepad

* Remove secrets file

* Add sample sensitive.h file

* Borrow @colinta's secrets.h include method

* Remove unnessary placeholder for macros

* Set secrets to use PROGMEM for char string

* Add readme files to my keymaps and userspace
2017-12-14 00:02:48 -05:00
Nico Hormazábal
557745ba9f Updated keymap and readme (#2147)
* added own keymap for planck

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* dynamic macros

* Update Readme.md

* moved the reset button

* Update readme for volume explanation

* Format

* Update Readme.md

* Update Readme.md

* added safe double shift

* changed the modified shift to regular shift, for allowing shift + F keys
2017-12-14 00:02:05 -05:00
bunnybugslpat
f229d22416 added iso support
added a keymap for an iso layout with 7u spacebar
2017-12-14 00:01:14 -05:00
Benny Powers
98ac32b417 Vim Layout for Ergodox-EZ (mac only) (#2112)
* ignore libs

* Clang complete file

* Add VIM_A, VIM_S, VIM_COMMAND_SHIFT_D, and VIM_COMMAND_SHIFT_A

Add VIM_A, VIM_S, VIM_COMMAND_SHIFT_D, and VIM_COMMAND_SHIFT_A

a s O

* Comment blocks for minimap

generated at
http://patorjk.com/software/taag/#p=display&h=0&v=0&c=c&f=Banner&t=COMMENT

* Be explicit

* More Comment blocks

* Add J

* add A, C, D, J, S, O

* Make h j k l explicitly vim commands (useful for JOIN)

* add cb ce cw ch cj ck cl db de dw dh dj dk dl vb ve vh vj vk vl x ciw diw viw

* debug messages for ci di vi

* Var capitalized

* Save bytes by disabling mouse keys

* Add Y P

* Be more explicit about which key was pressed

* Be more explicit about which key was sent

* Move project to new directory structure

* Remove non-vim layout folder

* Replace KC_TRNS with KC_NO on normal layer

* Insert Mode as default

* Try to prevent crashes

* Put normal mode back

* Revert "ignore libs"

This reverts commit 4c5d7592d6.

* add rules.mk

* Add mouse bindings

* Checkout most recent keymap following rebase

* Realign mouse button keys

* Make a macro for TO(NORMAL_MODE)
2017-12-11 21:06:05 -05:00
Balz Guenat
eeb6443767 actuation point adjustment for fc980c and fc660c (#2134)
* add i2c lib submodule

* add actuation point adjustment to fc980c

* add actuation point adjustment to fc660c also.

* use https for i2c submodule

* move to existing i2c lib

* properly remove old submodule

* oops, forgot some files for the fc660c
2017-12-11 21:05:12 -05:00
That-Canadian
c1a6ca46a7 The ruler (#2138)
* Line ending stuff again

* Added initital files and layout for the PCB Ruler keyboard/macro pad thing

* Updated Readme

* Changed make command to new format
2017-12-11 20:57:40 -05:00
Rasmus Schults
7c5428b56d Add rasmus keymap and fix default keymap readme 2017-12-10 15:17:00 -05:00
farmakon
d9983082c2 adds the gh80_3000 project (#2132) 2017-12-10 14:44:04 -05:00
Rasmus Schults
41d5d3e655 Add Lightsaver V3 keyboard 2017-12-10 13:28:37 -05:00
Jack Humbert
e6b91549e3 fixes audio/midi combinations 2017-12-10 11:54:36 -05:00
Jack Humbert
58898f77e3 fixes midi compile error 2017-12-10 11:32:36 -05:00
Jack Humbert
c2f4c4e29e update planck settings 2017-12-10 10:59:47 -05:00
Jack Humbert
a7c61f2947 fix up midi stuff w/music mode 2017-12-10 10:59:47 -05:00
Seebs
d1feb8744a Don't "unselect" left-hand rows
"unselecting" left-hand rows is a wasted i2c transaction.

On the left-hand side, the ergodox uses a GPIO expander. It
does *not* change "direction" (input/output) of pins, it just
sets pins high or low.

But all the pins are written at once. There's no way to
change just one pin's value; you send a full byte of all eight
row pins. (Not all of them are in use, but that doesn't matter.)
So every pin is either +V or ground. This is in contrast
with the right-hand side, which is using input mode to make pins
be neutral.

So there's no need to "deselect" the rows on the left side
at all. To select row 0, you set the GPIO register for the
rows to 0xFE. The previous code would then set it back to
0xFF, then set it to 0xFD on the next cycle. But we can just
omit the intervening step, and set it to 0xFD next cycle,
and get the same results.

And yes, I tested that the keyboard still works.

On my system, scan rate as reported by DEBUG_SCAN_RATE goes
from 445 or so to 579 or so, thus, from ~2.24ms to ~1.73ms.

Signed-off-by: seebs <seebs@seebs.net>
2017-12-10 00:40:41 -05:00
Balz Guenat
6d1b45fb84 change the ?= assignments to = 2017-12-10 00:40:19 -05:00
Balz Guenat
2c2e103457 some planck keymap shiftings and include proper-making 2017-12-10 00:40:19 -05:00
Balz Guenat
7235c93827 clean up bananasplit keymap 2017-12-10 00:40:19 -05:00
fauxpark
bb53635f33 Trim trailing whitespace 2017-12-09 10:46:11 -05:00
fauxpark
af37bb2f78 Fix some of the more obvious typos 2017-12-09 10:46:11 -05:00
fauxpark
4c675a83ba Format keycode tables 2017-12-09 10:46:11 -05:00
fauxpark
7b0356d1d4 Convert all headings to Title Case 2017-12-09 10:46:11 -05:00
Nico Hormazábal
6eb89ae906 New Planck Layout (#2123)
* added own keymap for planck

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md
2017-12-09 00:06:27 -05:00
Fredric Silberberg
b781cbf7e2 Turn on prevent stuck modifiers for my keymaps. 2017-12-09 00:06:08 -05:00
Cole Markham
a14518bf57 Updated copyright headers and peer review fixes 2017-12-09 00:05:35 -05:00
Cole Markham
f74f0ac06b Update Meira readme 2017-12-09 00:05:35 -05:00
Cole Markham
a9a46adba0 Add support for Meira 2017-12-09 00:05:35 -05:00
Scott Wilson
c51dfef958 Add support for LFKeyboard products: LFK78, LFK87 and SMK65 2017-12-09 00:01:58 -05:00
Balz Guenat
8b1862330a fix link for grave escape in docs 2017-12-08 16:12:46 -05:00
Martin Gondermann
dc6b341cf9 Updated readme 2017-12-08 16:12:31 -05:00
Martin Gondermann
155660ff9d Updated color for base layer to better match my key caps (Dasher) 2017-12-08 16:12:31 -05:00
Gaëtan Ark
6e25220eed Pointing to the right build URL
The previous URI used to point to the Nyquist keyboard build guide.
2017-12-08 16:12:05 -05:00
219 changed files with 11026 additions and 1084 deletions

24
.clang_complete Normal file
View File

@@ -0,0 +1,24 @@
-I.
-I./drivers
-I./drivers/avr
-I./keyboards/ergodox_ez
-I./keyboards/ergodox_ez/keymaps/vim
-I./lib
-I./lib/lufa
-I./quantum
-I./quantum/api
-I./quantum/audio
-I./quantum/keymap_extras
-I./quantum/process_keycode
-I./quantum/serial_link
-I./quantum/template
-I./quantum/tools
-I./quantum/visualizer
-I./tmk_core
-I./tmk_core/common
-I./tmk_core/common/debug.h
-I./tmk_core/protocol
-I./tmk_core/protocol/lufa
-I./util
-DQMK_KEYBOARD=\"$(KEYBOARD)\" -DQMK_KEYMAP=\"$(KEYMAP)\"

View File

@@ -4,13 +4,13 @@
QMK (*Quantum Mechanical Keyboard*) is an open source community that maintains QMK Firmware, QMK Flasher, qmk.fm, and these docs. QMK Firmware is a keyboard firmware based on the [tmk\_keyboard](http://github.com/tmk/tmk_keyboard) with some useful features for Atmel AVR controllers, and more specifically, the [OLKB product line](http://olkb.com), the [ErgoDox EZ](http://www.ergodox-ez.com) keyboard, and the [Clueboard product line](http://clueboard.co/). It has also been ported to ARM chips using ChibiOS. You can use it to power your own hand-wired or custom keyboard PCB.
## How to get it {#how-to-get-it}
## How to Get It {#how-to-get-it}
If you plan on contributing a keymap, keyboard, or features to QMK, the easiest thing to do is [fork the repo through Github](https://github.com/qmk/qmk_firmware#fork-destination-box), and clone your repo locally to make your changes, push them, then open a [Pull Request](https://github.com/qmk/qmk_firmware/pulls) from your fork.
Otherwise, you can either download it directly ([zip](https://github.com/qmk/qmk_firmware/zipball/master), [tar](https://github.com/qmk/qmk_firmware/tarball/master)), or clone it via git (`git@github.com:qmk/qmk_firmware.git`), or https (`https://github.com/qmk/qmk_firmware.git`).
## How to compile {#how-to-compile}
## How to Compile {#how-to-compile}
Before you are able to compile, you'll need to [install an environment](getting_started_build_tools.md) for AVR or/and ARM development. Once that is complete, you'll use the `make` command to build a keyboard and keymap with the following notation:
@@ -20,6 +20,6 @@ This would build the `rev4` revision of the `planck` with the `default` keymap.
make preonic:default
## How to customize {#how-to-customize}
## How to Customize {#how-to-customize}
QMK has lots of [features](features.md) to explore, and a good deal of [reference documentation](http://docs.qmk.fm) to dig through. Most features are taken advantage of by modifying your [keymap](keymap.md), and changing the [keycodes](keycodes.md).

View File

@@ -1,9 +1,9 @@
* [Getting started](README.md)
* [Getting Started](README.md)
* [QMK Introduction](getting_started_introduction.md)
* [Install Build Tools](getting_started_build_tools.md)
* Alternative: [Vagrant Guide](getting_started_vagrant.md)
* [Build/Compile instructions](getting_started_make_guide.md)
* [Flashing instructions](flashing.md)
* [Build/Compile Instructions](getting_started_make_guide.md)
* [Flashing Instructions](flashing.md)
* [Contributing to QMK](contributing.md)
* [How to Use Github](getting_started_github.md)
@@ -26,14 +26,14 @@
* [Backlight](feature_backlight.md)
* [Bootmagic](feature_bootmagic.md)
* [Dynamic Macros](feature_dynamic_macros.md)
* [Grave Escape](feature_grave_escape.md)
* [Grave Escape](feature_grave_esc.md)
* [Key Lock](feature_key_lock.md)
* [Layouts](feature_layouts.md)
* [Leader Key](feature_leader_key.md)
* [Macros](feature_macros.md)
* [Mouse keys](feature_mouse_keys.md)
* [Mouse Keys](feature_mouse_keys.md)
* [Pointing Device](feature_pointing_device.md)
* [PS2 Mouse](feature_ps2_mouse.md)
* [PS/2 Mouse](feature_ps2_mouse.md)
* [RGB Lighting](feature_rgblight.md)
* [Space Cadet](feature_space_cadet.md)
* [Stenography](feature_stenography.md)
@@ -65,12 +65,12 @@
* [Documentation Best Practices](documentation_best_practices.md)
* [Documentation Templates](documentation_templates.md)
* [Glossary](glossary.md)
* [Keymap overview](keymap.md)
* [Keymap Overview](keymap.md)
* [Unit Testing](unit_testing.md)
* For Makers and Modders
* [Hand Wiring Guide](hand_wire.md)
* [ISP flashing guide](isp_flashing_guide.md)
* [ISP Flashing Guide](isp_flashing_guide.md)
* For a Deeper Understanding
* [How Keyboards Work](how_keyboards_work.md)

View File

@@ -4,4 +4,4 @@ A QMK collaborator is a keyboard maker/designer that is interested in helping QM
* **Maintain the your keyboard's directory** - this may just require an initial setup to get your keyboard working, but it could also include accommodating changes made to QMK's core.
* **Approve and merge your keyboard's keymap pull requests** - we like to encourage users to contribute their keymaps for others to see and work from when creating their own.
If you feel you meet these requirements, shoot us an email at hello@qmk.fm with an introduction and some links to your keyboard!
If you feel you meet these requirements, shoot us an email at hello@qmk.fm with an introduction and some links to your keyboard!

View File

@@ -22,4 +22,4 @@ You can also use any ARM processor that [ChibiOS](http://www.chibios.org) suppor
* [Kinetis MKL26Z64](http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/kinetis-cortex-m-mcus/l-series-ultra-low-power-m0-plus/kinetis-kl2x-48-mhz-usb-ultra-low-power-microcontrollers-mcus-based-on-arm-cortex-m0-plus-core:KL2x)
* [Kinetis MK20DX128](http://www.nxp.com/assets/documents/data/en/data-sheets/K20P64M50SF0.pdf)
* [Kinetis MK20DX128](http://www.nxp.com/assets/documents/data/en/data-sheets/K20P64M50SF0.pdf)
* [Kinetis MK20DX256](http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/kinetis-cortex-m-mcus/k-series-performance-m4/k2x-usb/kinetis-k20-72-mhz-full-speed-usb-mixed-signal-integration-microcontrollers-mcus-based-on-arm-cortex-m4-core:K20_72)
* [Kinetis MK20DX256](http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/kinetis-cortex-m-mcus/k-series-performance-m4/k2x-usb/kinetis-k20-72-mhz-full-speed-usb-mixed-signal-integration-microcontrollers-mcus-based-on-arm-cortex-m4-core:K20_72)

View File

@@ -25,7 +25,7 @@ Some keyboards have folders and sub-folders to allow for different hardware conf
This level contains all of the options for that particular keymap. If you wish to override a previous declaration, you can use `#undef <variable>` to undefine it, where you can then redefine it without an error.
# The `config.h` file
# The `config.h` File
This is a C header file that is one of the first things included, and will persist over the whole project (if included). Lots of variables can be set here and accessed elsewhere. The `config.h` file shouldn't be including other `config.h` files, or anything besides this:
@@ -84,7 +84,7 @@ This is a C header file that is one of the first things included, and will persi
If you define these options you will disable the associated feature, which can save on code size.
* `#define NO_DEBUG`
* disable debuging
* disable debugging
* `#define NO_PRINT`
* disable printing/debugging using hid_listen
* `#define NO_ACTION_LAYER`
@@ -103,7 +103,7 @@ If you define these options you will disable the associated feature, which can s
If you define these options you will enable the associated feature, which may increase your code size.
* `#define FORCE_NKRO`
* NKRO by default requires to be turned on, this forces it on during keyboard startup regardless of eeprom setting. NKRO can still be turned off but will be turned on again if the keyboard reboots.
* NKRO by default requires to be turned on, this forces it on during keyboard startup regardless of EEPROM setting. NKRO can still be turned off but will be turned on again if the keyboard reboots.
* `#define PREVENT_STUCK_MODIFIERS`
* when switching layers, this will release all mods
@@ -146,11 +146,11 @@ If you define these options you will enable the associated feature, which may in
* `#define RGBLIGHT_HUE_STEP 12`
* units to step when in/decreasing hue
* `#define RGBLIGHT_SAT_STEP 25`
* units to step when in/decresing saturation
* units to step when in/decreasing saturation
* `#define RGBLIGHT_VAL_STEP 12`
* units to step when in/decreasing value (brightness)
* `#define RGBW_BB_TWI`
* bit-bangs twi to EZ RGBW LEDs (only required for Ergodox EZ)
* bit-bangs TWI to EZ RGBW LEDs (only required for Ergodox EZ)
### Mouse Key Options
@@ -164,7 +164,7 @@ If you define these options you will enable the associated feature, which may in
This is a [make](https://www.gnu.org/software/make/manual/make.html) file that is included by the top-level `Makefile`. It is used to set some information about the MCU that we will be compiling for as well as enabling and disabling certain features.
## `rules.mk` options
## `rules.mk` Options
### Build Options
@@ -204,7 +204,7 @@ Use these to enable or disable building certain features. The more you have enab
* `COMMAND_ENABLE`
* Commands for debug and configuration
* `NKRO_ENABLE`
* USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
* USB N-Key Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
* `AUDIO_ENABLE`
* Enable the audio subsystem.
* `RGBLIGHT_ENABLE`

View File

@@ -1,4 +1,4 @@
# How To Contribute
# How to Contribute
👍🎉 First off, thanks for taking the time to read this and contribute! 🎉👍
@@ -9,7 +9,7 @@ Third-party contributions help us grow and improve QMK. We want to make the pull
* [General Guidelines](#general-guidelines)
* [What does the Code of Conduct mean for me?](#what-does-the-code-of-conduct-mean-for-me)
## I Don't Want To Read This Whole Thing I Just Have a Question!
## I Don't Want to Read This Whole Thing! I Just Have a Question!
If you'd like to ask questions about QMK you can do so on the [OLKB Subreddit](https://reddit.com/r/olkb) or on [Gitter](https://gitter.im/qmk/qmk_firmware).
@@ -27,7 +27,7 @@ QMK is largely written in C, with specific features and parts written in C++. It
<!-- FIXME: We should include a list of resources for learning C here. -->
# Where can I go for help?
# Where Can I Go for Help?
If you need help you can [open an issue](https://github.com/qmk/qmk_firmware/issues) or [chat on gitter](http://gitter.im/QMK/qmk_firmware).
@@ -52,7 +52,7 @@ Never made an open source contribution before? Wondering how contributions work
14. Make changes to the pull request if the reviewing maintainer recommends them.
15. Celebrate your success after your pull request is merged!
# Coding conventions
# Coding Conventions
Most of our style is pretty easy to pick up on, but right now it's not entirely consistent. You should match the style of the code surrounding your change, but if that code is inconsistent or unclear use the following guidelines:
@@ -64,7 +64,7 @@ Most of our style is pretty easy to pick up on, but right now it's not entirely
* Optional Braces: Always include optional braces.
* Good: if (condition) { return false; }
* Bad: if (condition) return false;
* We use C style comments: /* */
* We use C style comments: `/* */`
* Think of them as a story describing the feature
* Use them liberally to explain why particular decisions were made.
* Do not write obvious comments
@@ -75,7 +75,7 @@ Most of our style is pretty easy to pick up on, but right now it's not entirely
We have a few different types of changes in QMK, each requiring a different level of rigor. We'd like you to keep the following guidelines in mind no matter what type of change you're making.
* Separate PR's into logical units. For example, do not submit one PR covering two separate features, instead submit a separate PR for each feature.
* Separate PR's into logical units. For example, do not submit one PR covering two separate features, instead submit a separate PR for each feature.
* Check for unnecessary whitespace with `git diff --check` before committing.
* Make sure your code change actually compiles.
* Keymaps: Make sure that `make keyboard:your_new_keymap` does not return an error
@@ -111,7 +111,7 @@ Most first-time QMK contributors start with their personal keymaps. We try to ke
Keyboards are the raison d'être for QMK. Some keyboards are community maintained, while others are maintained by the people responsible for making a particular keyboard. The `readme.md` should tell you who maintains a particular keyboard. If you have questions relating to a particular keyboard you can [Open An Issue](https://github.com/qmk/qmk_firmware/issues) and tag the maintainer in your question.
We also ask that you follow these guidelines:
We also ask that you follow these guidelines:
* Write a `readme.md` using [the template](https://docs.qmk.fm/documentation_templates.html#).
* Keep the number of commits reasonable or we will squash your PR
@@ -122,7 +122,7 @@ We also ask that you follow these guidelines:
## Quantum/TMK Core
Before you put a lot of work into building your new feature you should make sure you are implementing it in the best way. You can get a basic understanding of QMK by reading [Understaning QMK](understanding_qmk.md), which will take you on a tour of the QMK program flow. From here you should talk to us to get a sense of the best way to implement your idea. There are two main ways to do this:
Before you put a lot of work into building your new feature you should make sure you are implementing it in the best way. You can get a basic understanding of QMK by reading [Understanding QMK](understanding_qmk.md), which will take you on a tour of the QMK program flow. From here you should talk to us to get a sense of the best way to implement your idea. There are two main ways to do this:
* [Chat on Gitter](https://gitter.im/qmk/qmk_firmware)
* [Open an Issue](https://github.com/qmk/qmk_firmware/issues/new)
@@ -136,7 +136,7 @@ Here are some things to keep in mind when working on your feature or bug fix.
* **Consider revisions and different chip-bases** - there are several keyboards that have revisions that allow for slightly different configurations, and even different chip-bases. Try to make a feature supported in ARM and AVR, or automatically disabled on platforms it doesn't work on.
* **Explain your feature** - Document it in `docs/`, either as a new file or as part of an existing file. If you don't document it other people won't be able to benefit from your hard work.
We also ask that you follow these guidelines:
We also ask that you follow these guidelines:
* Keep the number of commits reasonable or we will squash your PR
* Do not lump keyboards or keymaps in with core changes. Submit your core changes first.
@@ -147,6 +147,6 @@ We also ask that you follow these guidelines:
To maintain a clear vision of how things are laid out in QMK we try to plan out refactors in-depth and have a collaborator make the changes. If you have an idea for refactoring, or suggestions, [open an issue](https://github.com/qmk/qmk_firmware/issues), we'd love to talk about how QMK can be improved.
# What does the Code of Conduct mean for me?
# What Does the Code of Conduct Mean for Me?
Our [Code of Conduct](https://github.com/qmk/qmk_firmware/blob/master/CODE_OF_CONDUCT.md) means that you are responsible for treating everyone on the project with respect and courtesy regardless of their identity. If you are the victim of any inappropriate behavior or comments as described in our Code of Conduct, we are here for you and will do the best to ensure that the abuser is reprimanded appropriately, per our code.

View File

@@ -1,6 +1,6 @@
# How To Customize Your Keyboard's Behavior
# How to Customize Your Keyboard's Behavior
For a lot of people a custom keyboard is about more than sending button presses to your computer. You want to be able to do things that are more complex than simple button presses and macros. QMK has hooks that allow you to inject code, override functionality, and otherwise customize how your keyboard behaves in different situations.
For a lot of people a custom keyboard is about more than sending button presses to your computer. You want to be able to do things that are more complex than simple button presses and macros. QMK has hooks that allow you to inject code, override functionality, and otherwise customize how your keyboard behaves in different situations.
This page does not assume any special knowledge about QMK, but reading [Understanding QMK](understanding_qmk.md) will help you understand what is going on at a more fundamental level.
@@ -34,13 +34,13 @@ enum my_keycodes {
};
```
## Programming The Behavior Of Any Keycode
## Programming the Behavior of Any Keycode
When you want to override the behavior of an existing key, or define the behavior for a new key, you should use the `process_record_kb()` and `process_record_user()` functions. These are called by QMK during key processing before the actual key event is handled. If these functions return `true` QMK will process the keycodes as usual. That can be handy for extending the functionality of a key rather than replacing it. If these functions return `false` QMK will skip the normal key handling, and it will be up you to send any key up or down events that are required.
These function are called every time a key is pressed or released.
### Example `process_record_user()` implementation
### Example `process_record_user()` Implementation
This example does two things. It defines the behavior for a custom keycode called `FOO`, and it supplements our Enter key by playing a tone whenever it is pressed.
@@ -64,14 +64,14 @@ bool process_record_user(uint16_t keycode, keyrecord_t *record) {
}
```
### `process_record_*` Function documentation
### `process_record_*` Function Documentation
* Keyboard/Revision: `bool process_record_kb(uint16_t keycode, keyrecord_t *record)`
* Keyboard/Revision: `bool process_record_kb(uint16_t keycode, keyrecord_t *record)`
* Keymap: `bool process_record_user(uint16_t keycode, keyrecord_t *record)`
The `keycode` argument is whatever is defined in your keymap, eg `MO(1)`, `KC_L`, etc. You should use a `switch...case` block to handle these events.
The `record` argument contains infomation about the actual press:
The `record` argument contains information about the actual press:
```
keyrecord_t record {
@@ -96,7 +96,7 @@ This allows you to control the 5 LED's defined as part of the USB Keyboard spec.
* `USB_LED_COMPOSE`
* `USB_LED_KANA`
### Example `led_set_kb()` implementation
### Example `led_set_kb()` Implementation
```
void led_set_kb(uint8_t usb_led) {
@@ -128,16 +128,16 @@ void led_set_kb(uint8_t usb_led) {
}
```
### `led_set_*` Function documentation
### `led_set_*` Function Documentation
* Keyboard/Revision: `void led_set_kb(uint8_t usb_led)`
* Keyboard/Revision: `void led_set_kb(uint8_t usb_led)`
* Keymap: `void led_set_user(uint8_t usb_led)`
# Matrix Initialization Code
Before a keyboard can be used the hardware must be initialized. QMK handles initialization of the keyboard matrix itself, but if you have other hardware like LED's or i&#xb2;c controllers you will need to set up that hardware before it can be used.
### Example `matrix_init_kb()` implementation
### Example `matrix_init_kb()` Implementation
This example, at the keyboard level, sets up B1, B2, and B3 as LED pins.
@@ -153,20 +153,20 @@ void matrix_init_kb(void) {
}
```
### `matrix_init_*` Function documentation
### `matrix_init_*` Function Documentation
* Keyboard/Revision: `void matrix_init_kb(void)`
* Keyboard/Revision: `void matrix_init_kb(void)`
* Keymap: `void matrix_init_user(void)`
# Matrix Scanning Code
Whenever possible you should customize your keyboard by using `process_record_*()` and hooking into events that way, to ensure that your code does not have a negative performance impact on your keyboard. However, in rare cases it is necessary to hook into the matrix scanning. Be extremely careful with the performance of code in these functions, as it will be called at least 10 times per second.
### Example `matrix_scan_*` implementation
### Example `matrix_scan_*` Implementation
This example has been deliberately omitted. You should understand enough about QMK internals to write this without an example before hooking into such a performance sensitive area. If you need help please [open an issue](https://github.com/qmk/qmk_firmware/issues/new) or [chat with us on gitter](https://gitter.im/qmk/qmk_firmware).
### `matrix_scan_*` Function documentation
### `matrix_scan_*` Function Documentation
* Keyboard/Revision: `void matrix_scan_kb(void)`
* Keymap: `void matrix_scan_user(void)`

View File

@@ -4,7 +4,7 @@ This page exists to document best practices when writing documentation for QMK.
# Page Opening
Your documentation page should generally start with an H1 heading, followed by a 1 paragrah description of what the user will find on this page. Keep in mind that this heading and paragraph will sit next to the Table of Contents, so keep the heading short and avoid long strings with no whitespace.
Your documentation page should generally start with an H1 heading, followed by a 1 paragraph description of what the user will find on this page. Keep in mind that this heading and paragraph will sit next to the Table of Contents, so keep the heading short and avoid long strings with no whitespace.
Example:
@@ -78,7 +78,7 @@ What about an error message?
# Documenting Features
If you create a new feature for QMK, create a documentation page for it. It doesn't have to be very long, a few sentances describing your feature and a table listing any relevant keycodes is enough. Here is a basic template:
If you create a new feature for QMK, create a documentation page for it. It doesn't have to be very long, a few sentences describing your feature and a table listing any relevant keycodes is enough. Here is a basic template:
```markdown
# My Cool Feature

View File

@@ -1,4 +1,4 @@
# Setting Up Eclipse for QMK Development
# Setting up Eclipse for QMK Development
[Eclipse](https://en.wikipedia.org/wiki/Eclipse_(software)) is an open-source [Integrated Development Environment](https://en.wikipedia.org/wiki/Integrated_development_environment) (IDE) widely used for Java development, but with an extensible plugin system that allows to customize it for other languages and usages.
@@ -16,16 +16,16 @@ The purpose of the is page is to document how to set-up Eclipse for developing A
Note that this set-up has been tested on Ubuntu 16.04 only for the moment.
# Prerequisites
## Build environment
## Build Environment
Before starting, you must have followed the [Getting Started](home.md#getting-started) section corresponding to your system. In particular, you must have been able to build the firmware with [the `make` command](../#the-make-command).
## Java
Eclipse is a Java application, so you will need to install Java 8 or more recent to be able to run it. You may choose between the JRE or the JDK, the latter being useful if you intend to do Java development.
# Install Eclipse and its plugins
# Install Eclipse and Its Plugins
Eclipse comes in [several flavours](http://www.eclipse.org/downloads/eclipse-packages/) depending on the target usage that you will have. There is no package comprising the AVR stack, so we will need to start from Eclipse CDT (C/C++ Development Tooling) and install the necessary plugins.
## Download and install Eclipse CDT
## Download and Install Eclipse CDT
If you already have Eclipse CDT on your system, you can skip this step. However it is advised to keep it up-to-date for better support.
If you have another Eclipse package installed, it is normally possible to [install the CDT plugin over it](https://eclipse.org/cdt/downloads.php). However it is probably better to reinstall it from scratch to keep it light and avoid the clutter of tools that you don't need for the projects you will be working on.
@@ -41,10 +41,10 @@ When you are prompted with the Workspace Selector, select a directory that will
Once started, click the <kbd>Workbench</kbd> button at the top right to switch to the workbench view (there is a also checkbox at the bottom to skip the welcome screen at startup).
## Install the necessary plugins
## Install the Necessary Plugins
Note: you do not need to restart Eclipse after installing each plugin. Simply restart once all plugins are installed.
### [The AVR plugin](http://avr-eclipse.sourceforge.net/)
### [The AVR Plugin](http://avr-eclipse.sourceforge.net/)
This is the most important plugin as it will allow Eclipse to _understand_ AVR C code. Follow [the instructions for using the update site](http://avr-eclipse.sourceforge.net/wiki/index.php/Plugin_Download#Update_Site), and agree with the security warning for unsigned content.
### [ANSI Escape in Console](https://marketplace.eclipse.org/content/ansi-escape-console)
@@ -58,7 +58,7 @@ This plugin is necessary to properly display the colored build output generated
Once both plugins are installed, restart Eclipse as prompted.
# Configure Eclipse for QMK
## Importing the project
## Importing the Project
1. Click <kbd><kbd>File</kbd> > <kbd>New</kbd> > <kbd>Makefile Project with Existing Code</kbd></kbd>
2. On the next screen:
* Select the directory where you cloned the repository as _Existing Code Location_;
@@ -72,7 +72,7 @@ Once both plugins are installed, restart Eclipse as prompted.
¹ There might be issues for importing the project with a custom name. If it does not work properly, try leaving the default project name (i.e. the name of the directory, probably `qmk_firmware`).
## Build your keyboard
## Build Your Keyboard
We will now configure a make target that cleans the project and builds the keymap of your choice.
1. On the right side of the screen, select the <kbd>Make Target</kbd> tab

View File

@@ -2,11 +2,11 @@
This page covers questions about building QMK. If you have not yet you should read the [Build Environment Setup](getting_started_build_tools.md) and [Make Instructions](getting_started_make_guide.md) guides.
## Can't program on Linux
## Can't Program on Linux
You will need proper permission to operate a device. For Linux users see udev rules below. Easy way is to use `sudo` command, if you are not familiar with this command check its manual with `man sudo` or this page on line.
In short when your controller is ATMega32u4,
$ sudo dfu-programmer atmega32u4 erase --force
$ sudo dfu-programmer atmega32u4 flash your.hex
$ sudo dfu-programmer atmega32u4 reset
@@ -17,7 +17,7 @@ or just
But to run `make` with root privilege is not good idea. Use former method if possible.
## WINAVR is obsolete
## WINAVR is Obsolete
It is no longer recommended and may cause some problem.
See [TMK Issue #99](https://github.com/tmk/tmk_keyboard/issues/99).
@@ -33,7 +33,7 @@ You can buy a really unique VID:PID here. I don't think you need this for person
- http://www.obdev.at/products/vusb/license.html
- http://www.mcselec.com/index.php?page=shop.product_details&flypage=shop.flypage&product_id=92&option=com_phpshop&Itemid=1
## Linux udev rules
## Linux `udev` Rules
On Linux you need proper privilege to access device file of MCU, you'll have to use `sudo` when flashing firmware. You can circumvent this with placing these files in `/etc/udev/rules.d/`.
**/etc/udev/rules.d/50-atmel-dfu.rules:**
@@ -53,7 +53,7 @@ SUBSYSTEMS=="usb", ATTRS{idVendor}=="feed", MODE:="0666"
```
## Cortex: cstddef: No such file or directory
## Cortex: `cstddef: No such file or directory`
GCC 4.8 of Ubuntu 14.04 had this problem and had to update to 4.9 with this PPA.
https://launchpad.net/~terry.guo/+archive/ubuntu/gcc-arm-embedded
@@ -62,7 +62,7 @@ https://github.com/tmk/tmk_keyboard/wiki/mbed-cortex-porting#compile-error-cstdd
https://developer.mbed.org/forum/mbed/topic/5205/
## `clock_prescale_set` and `clock_div_1` not available
## `clock_prescale_set` and `clock_div_1` Not Available
Your toolchain is too old to support the MCU. For example WinAVR 20100110 doesn't support ATMega32u2.
```
@@ -81,11 +81,11 @@ make: *** [obj_alps64/protocol/lufa/lufa.o] Error 1
Note that Teensy2.0++ bootloader size is 2048byte. Some Makefiles may have wrong comment.
```
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 2048
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 2048
# Atmel DFU loader 4096 (TMK Alt Controller)
# LUFA bootloader 4096
# USBaspLoader 2048
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=2048
```

View File

@@ -4,14 +4,14 @@ This page details various common questions people have about troubleshooting the
# Debug Console
## hid_listen can't recognize device
## `hid_listen` Can't Recognize Device
When debug console of your device is not ready you will see like this:
```
Waiting for device:.........
```
once the device is pluged in then *hid_listen* finds it you will get this message:
once the device is plugged in then *hid_listen* finds it you will get this message:
```
Waiting for new device:.........................
@@ -23,7 +23,7 @@ If you can't get this 'Listening:' message try building with `CONSOLE_ENABLE=yes
You may need privilege to access the device on OS like Linux.
- try `sudo hid_listen`
## Can't get message on console
## Can't Get Message on Console
Check:
- *hid_listen* finds your device. See above.
- Enable debug with pressing **Magic**+d. See [Magic Commands](https://github.com/tmk/tmk_keyboard#magic-commands).
@@ -31,7 +31,7 @@ Check:
- try using 'print' function instead of debug print. See **common/print.h**.
- disconnect other devices with console function. See [Issue #97](https://github.com/tmk/tmk_keyboard/issues/97).
## Linux or UNIX like system requires Super User privilege
## Linux or UNIX Like System Requires Super User Privilege
Just use 'sudo' to execute *hid_listen* with privilege.
```
$ sudo hid_listen
@@ -82,46 +82,46 @@ Size after:
consume extra memory; watch out for BOOTMAGIC_ENABLE,
MOUSEKEY_ENABLE, EXTRAKEY_ENABLE, CONSOLE_ENABLE, API_SYSEX_ENABLE
- DFU tools do /not/ allow you to write into the bootloader (unless
you throw in extra fruitsalad of options), so there is little risk
you throw in extra fruit salad of options), so there is little risk
there.
- EEPROM has around a 100000 write cycle. You shouldn't rewrite the
firmware repeatedly and continually; that'll burn the EEPROM
eventually.
## NKRO Doesn't work
First you have to compile frimware with this build option `NKRO_ENABLE` in **Makefile**.
First you have to compile firmware with this build option `NKRO_ENABLE` in **Makefile**.
Try `Magic` **N** command(`LShift+RShift+N` by default) when **NKRO** still doesn't work. You can use this command to toggle between **NKRO** and **6KRO** mode temporarily. In some situations **NKRO** doesn't work you need to switch to **6KRO** mode, in particular when you are in BIOS.
If your firmware built with `BOOTMAGIC_ENABLE` you need to turn its switch on by `BootMagic` **N** command(`Space+N` by default). This setting is stored in EEPROM and keeped over power cycles.
If your firmware built with `BOOTMAGIC_ENABLE` you need to turn its switch on by `BootMagic` **N** command(`Space+N` by default). This setting is stored in EEPROM and kept over power cycles.
https://github.com/tmk/tmk_keyboard#boot-magic-configuration---virtual-dip-switch
## TrackPoint needs reset circuit(PS/2 mouse support)
Without reset circuit you will have inconsistent reuslt due to improper initialize of the hardware. See circuit schematic of TPM754.
## TrackPoint Needs Reset Circuit (PS/2 Mouse Support)
Without reset circuit you will have inconsistent result due to improper initialize of the hardware. See circuit schematic of TPM754.
- http://geekhack.org/index.php?topic=50176.msg1127447#msg1127447
- http://www.mikrocontroller.net/attachment/52583/tpm754.pdf
## Can't read column of matrix beyond 16
## Can't Read Column of Matrix Beyond 16
Use `1UL<<16` instead of `1<<16` in `read_cols()` in [matrix.h] when your columns goes beyond 16.
In C `1` means one of [int] type which is [16bit] in case of AVR so you can't shift left more than 15. You will get unexpected zero when you say `1<<16`. You have to use [unsigned long] type with `1UL`.
In C `1` means one of [int] type which is [16 bit] in case of AVR so you can't shift left more than 15. You will get unexpected zero when you say `1<<16`. You have to use [unsigned long] type with `1UL`.
http://deskthority.net/workshop-f7/rebuilding-and-redesigning-a-classic-thinkpad-keyboard-t6181-60.html#p146279
## Bootloader jump doesn't work
## Bootloader Jump Doesn't Work
Properly configure bootloader size in **Makefile**. With wrong section size bootloader won't probably start with **Magic command** and **Boot Magic**.
```
# Size of Bootloaders in bytes:
# Atmel DFU loader(ATmega32U4) 4096
# Atmel DFU loader(AT90USB128) 8192
# LUFA bootloader(ATmega32U4) 4096
# Arduino Caterina(ATmega32U4) 4096
# USBaspLoader(ATmega***) 2048
# Teensy halfKay(ATmega32U4) 512
# Atmel DFU loader(ATmega32U4) 4096
# Atmel DFU loader(AT90USB128) 8192
# LUFA bootloader(ATmega32U4) 4096
# Arduino Caterina(ATmega32U4) 4096
# USBaspLoader(ATmega***) 2048
# Teensy halfKay(ATmega32U4) 512
# Teensy++ halfKay(AT90USB128) 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
```
@@ -135,14 +135,14 @@ byte Atmel/LUFA(ATMega32u4) byte Atmel(AT90SUB1286)
| | | |
| | | |
| Application | | Application |
| | | |
| | | |
= = = =
| | 32KB-4KB | | 128KB-8KB
0x6000 +---------------+ 0x1E000 +---------------+
| Bootloader | 4KB | Bootloader | 8KB
0x7FFF +---------------+ 0x1FFFF +---------------+
byte Teensy(ATMega32u4) byte Teensy++(AT90SUB1286)
0x0000 +---------------+ 0x00000 +---------------+
| | | |
@@ -161,14 +161,14 @@ https://github.com/tmk/tmk_keyboard/issues/179
If you are using a TeensyUSB, there is a [known bug](https://github.com/qmk/qmk_firmware/issues/164) in which the hardware reset button prevents the RESET key from working. Unplugging the keyboard and plugging it back in should resolve the problem.
## Special Extra key doesn't work(System, Audio control keys)
## Special Extra Key Doesn't Work (System, Audio Control Keys)
You need to define `EXTRAKEY_ENABLE` in `rules.mk` to use them in QMK.
```
EXTRAKEY_ENABLE = yes # Audio control and System control
```
## Wakeup from sleep doesn't work
## Wakeup from Sleep Doesn't Work
In Windows check `Allow this device to wake the computer` setting in Power **Management property** tab of **Device Manager**. Also check BIOS setting.
@@ -181,11 +181,11 @@ Pressing any key during sleep should wake host.
- http://arduino.cc/en/uploads/Main/arduino-leonardo-schematic_3b.pdf
- http://arduino.cc/en/uploads/Main/arduino-micro-schematic.pdf
Arduino leonardo and micro have **ATMega32U4** and can be used for TMK, though Arduino bootloader may be a problem.
Arduino Leonardo and micro have **ATMega32U4** and can be used for TMK, though Arduino bootloader may be a problem.
## Using PF4-7 pins of USB AVR?
You need to set JTD bit of MCUCR yourself to use PF4-7 as GPIO. Those pins are configured to serve JTAG function by default. MCUs like ATMega*U* or AT90USB* are affeteced with this.
## Using PF4-7 Pins of USB AVR?
You need to set JTD bit of MCUCR yourself to use PF4-7 as GPIO. Those pins are configured to serve JTAG function by default. MCUs like ATMega*U* or AT90USB* are affected with this.
If you are using Teensy this isn't needed. Teensy is shipped with JTAGEN fuse bit unprogrammed to disable the function.
@@ -200,7 +200,7 @@ https://github.com/tmk/tmk_keyboard/blob/master/keyboard/hbkb/matrix.c#L67
And read **26.5.1 MCU Control Register MCUCR** of ATMega32U4 datasheet.
## Adding LED indicators of Lock keys
## Adding LED Indicators of Lock Keys
You need your own LED indicators for CapsLock, ScrollLock and NumLock? See this post.
http://deskthority.net/workshop-f7/tmk-keyboard-firmware-collection-t4478-120.html#p191560
@@ -218,26 +218,26 @@ http://arduino.cc/en/Main/ArduinoBoardMicro
https://geekhack.org/index.php?topic=14290.msg1563867#msg1563867
## USB 3 compatibility
## USB 3 Compatibility
I heard some people have a problem with USB 3 port, try USB 2 port.
## Mac compatibility
## Mac Compatibility
### OS X 10.11 and Hub
https://geekhack.org/index.php?topic=14290.msg1884034#msg1884034
## Problem on BIOS(UEFI)/Resume(Sleep&Wake)/Power cycles
## Problem on BIOS (UEFI)/Resume (Sleep & Wake)/Power Cycles
Some people reported their keyboard stops working on BIOS and/or after resume(power cycles).
As of now root of its cause is not clear but some build options seem to be related. In Makefile try to disable those options like `CONSOLE_ENABLE`, `NKRO_ENABLE`, `SLEEP_LED_ENABLE` and/or others.
As of now root of its cause is not clear but some build options seem to be related. In Makefile try to disable those options like `CONSOLE_ENABLE`, `NKRO_ENABLE`, `SLEEP_LED_ENABLE` and/or others.
https://github.com/tmk/tmk_keyboard/issues/266
https://geekhack.org/index.php?topic=41989.msg1967778#msg1967778
## FLIP doesn't work
### AtLibUsbDfu.dll not found
## FLIP Doesn't Work
### `AtLibUsbDfu.dll` Not Found
Remove current driver and reinstall one FLIP provides from DeviceManager.
http://imgur.com/a/bnwzy

View File

@@ -4,7 +4,7 @@
[QMK](https://github.com/qmk), short for Quantum Mechanical Keyboard, is a group of people building tools for custom keyboards. We started with the [QMK firmware](https://github.com/qmk/qmk_firmware), a heavily modified fork of [TMK](https://github.com/tmk/tmk_keyboard).
### Why the name Quantum?
### Why the Name Quantum?
<!-- FIXME -->
@@ -17,4 +17,3 @@ From a technical standpoint QMK builds upon TMK by adding several new features.
From a project and community management standpoint TMK maintains all the officially supported keyboards by himself, with a bit of community support. Separate community maintained forks exist or can be created for other keyboards. Only a few keymaps are provided by default, so users typically don't share keymaps with each other. QMK encourages sharing of both keyboards and keymaps through a centrally managed repository, accepting all pull requests that follow the quality standards. These are mostly community maintained, but the QMK team also helps when necessary.
Both approaches have their merits and their drawbacks, and code flows freely between TMK and QMK when it makes sense.

View File

@@ -7,7 +7,7 @@ See [Keycodes](keycodes.md) for an index of keycodes available to you. These lin
Keycodes are actually defined in [common/keycode.h](https://github.com/qmk/qmk_firmware/blob/master/tmk_core/common/keycode.h).
## What Are The Default Keycodes?
## What Are the Default Keycodes?
There are 3 standard keyboard layouts in use around the world- ANSI, ISO, and JIS. North America primarily uses ANSI, Europe and Africa primarily use ISO, and Japan uses JIS. Regions not mentioned typically use either ANSI or ISO. The keycodes corresponding to these layouts are shown here:
@@ -18,25 +18,25 @@ There are 3 standard keyboard layouts in use around the world- ANSI, ISO, and JI
The key found on most modern keyboards that is located between `KC_RGUI` and `KC_RCTL` is actually called `KC_APP`. This is because when that key was invented there was already a key named `MENU` in the relevant standards, so MS chose to call that the `APP` key.
## `KC_SYSREQ` isn't working
## `KC_SYSREQ` Isn't Working
Use keycode for Print Screen(`KC_PSCREEN` or `KC_PSCR`) instead of `KC_SYSREQ`. Key combination of 'Alt + Print Screen' is recognized as 'System request'.
See [issue #168](https://github.com/tmk/tmk_keyboard/issues/168) and
- http://en.wikipedia.org/wiki/Magic_SysRq_key
- http://en.wikipedia.org/wiki/System_request
## Power key doesn't work
## Power Key Doesn't Work
Use `KC_PWR` instead of `KC_POWER` or vice versa.
- `KC_PWR` works with Windows and Linux, not with OSX.
- `KC_POWER` works with OSX and Linux, not with Windows.
More info: http://geekhack.org/index.php?topic=14290.msg1327264#msg1327264
## Oneshot modifier
Solves my personal 'the' problem. I often got 'the' or 'THe' wrongly instead of 'The'. Oneshot Shift mitgates this for me.
## One Shot Modifier
Solves my personal 'the' problem. I often got 'the' or 'THe' wrongly instead of 'The'. One Shot Shift mitigates this for me.
https://github.com/tmk/tmk_keyboard/issues/67
## Modifier/Layer stuck
## Modifier/Layer Stuck
Modifier keys or layers can be stuck unless layer switching is configured properly.
For Modifier keys and layer actions you have to place `KC_TRANS` on same position of destination layer to unregister the modifier key or return to previous layer on release event.
@@ -48,7 +48,7 @@ For Modifier keys and layer actions you have to place `KC_TRANS` on same positio
## Mechanical Lock Switch Support
This feature is for *mechanical lock switch* like [this Alps one](http://deskthority.net/wiki/Alps_SKCL_Lock). You can enable it by adding this to your `config.h`:
```
#define LOCKING_SUPPORT_ENABLE
#define LOCKING_RESYNC_ENABLE
@@ -58,7 +58,7 @@ After enabling this feature use keycodes `KC_LCAP`, `KC_LNUM` and `KC_LSCR` in y
Old vintage mechanical keyboards occasionally have lock switches but modern ones don't have. ***You don't need this feature in most case and just use keycodes `KC_CAPS`, `KC_NLCK` and `KC_SLCK`.***
## Input special charactors other than ASCII like Cédille 'Ç'
## Input Special Characters Other Than ASCII like Cédille 'Ç'
NO UNIVERSAL METHOD TO INPUT THOSE WORKS OVER ALL SYSTEMS. You have to define **MACRO** in way specific to your OS or layout.
See this post for example **MACRO** code.
@@ -79,7 +79,7 @@ And see this for **Unicode** input.
- http://en.wikipedia.org/wiki/Unicode_input
## Apple/Mac keyboard Fn
## Apple/Mac Keyboard `Fn`
Not supported.
Apple/Mac keyboard sends keycode for Fn unlike most of other keyboards.
@@ -88,13 +88,13 @@ I think you can send Apple Fn key using Apple venter specific Page 0xff01 and us
https://opensource.apple.com/source/IOHIDFamily/IOHIDFamily-606.1.7/IOHIDFamily/AppleHIDUsageTables.h
## Media control keys in Mac OSX
#### KC_MNXT and KC_MPRV does not work on Mac
## Media Control Keys in Mac OSX
#### KC_MNXT and KC_MPRV Does Not Work on Mac
Use `KC_MFFD`(`KC_MEDIA_FAST_FORWARD`) and `KC_MRWD`(`KC_MEDIA_REWIND`) instead of `KC_MNXT` and `KC_MPRV`.
See https://github.com/tmk/tmk_keyboard/issues/195
## Keys supported in Mac OSX?
## Keys Supported in Mac OSX?
You can know which keycodes are supported in OSX from this source code.
`usb_2_adb_keymap` array maps Keyboard/Keypad Page usages to ADB scancodes(OSX internal keycodes).
@@ -106,7 +106,7 @@ And `IOHIDConsumer::dispatchConsumerEvent` handles Consumer page usages.
https://opensource.apple.com/source/IOHIDFamily/IOHIDFamily-606.1.7/IOHIDFamily/IOHIDConsumer.cpp
## JIS keys in Mac OSX
## JIS Keys in Mac OSX
Japanese JIS keyboard specific keys like `無変換(Muhenkan)`, `変換(Henkan)`, `ひらがな(hiragana)` are not recognized on OSX. You can use **Seil** to enable those keys, try following options.
* Enable NFER Key on PC keyboard
@@ -116,21 +116,21 @@ Japanese JIS keyboard specific keys like `無変換(Muhenkan)`, `変換(Henkan)`
https://pqrs.org/osx/karabiner/seil.html
## RN-42 Bluetooth doesn't work with Karabiner
## RN-42 Bluetooth Doesn't Work with Karabiner
Karabiner - Keymapping tool on Mac OSX - ignores inputs from RN-42 module by default. You have to enable this option to make Karabiner working with your keyboard.
https://github.com/tekezo/Karabiner/issues/403#issuecomment-102559237
See these for the deail of this problem.
See these for the detail of this problem.
https://github.com/tmk/tmk_keyboard/issues/213
https://github.com/tekezo/Karabiner/issues/403
## Esc and `~ on a single key
## Esc and <code>&#96;</code> on a Single Key
See the [Grave Escape](feature_grave_escape.md) feature.
## Arrow on Right Modifier keys with Dual-Role
This turns right modifer keys into arrow keys when the keys are tapped while still modifiers when the keys are hold. In TMK the dual-role function is dubbed **TAP**.
## Arrow on Right Modifier Keys with Dual-Role
This turns right modifier keys into arrow keys when the keys are tapped while still modifiers when the keys are hold. In TMK the dual-role function is dubbed **TAP**.
```
#include "keymap_common.h"
@@ -181,18 +181,18 @@ It seems Windows 10 ignores the code and Linux/Xorg recognizes but has no mappin
Not sure what keycode Eject is on genuine Apple keyboard actually. HHKB uses `F20` for Eject key(`Fn+f`) on Mac mode but this is not same as Apple Eject keycode probably.
## What's weak_mods and real_mods in action_util.c
## What's `weak_mods` and `real_mods` in `action_util.c`
___TO BE IMPROVED___
real_mods is intended to retains state of real/physical modifier key state, while
weak_mods retains state of virtual or temprary modifiers which should not affect state real modifier key.
weak_mods retains state of virtual or temporary modifiers which should not affect state real modifier key.
Let's say you hold down physical left shift key and type ACTION_MODS_KEY(LSHIFT, KC_A),
Let's say you hold down physical left shift key and type ACTION_MODS_KEY(LSHIFT, KC_A),
with weak_mods,
* (1) hold down left shift: real_mods |= MOD_BIT(LSHIFT)
* (2) press ACTION_MODS_KEY(LSHIFT, KC_A): weak_mods |= MOD_BIT(LSHIFT)
* (3) release ACTION_MODS_KEY(LSHIFT, KC_A): waek_mods &= ~MOD_BIT(LSHIFT)
* (3) release ACTION_MODS_KEY(LSHIFT, KC_A): weak_mods &= ~MOD_BIT(LSHIFT)
real_mods still keeps modifier state.
without weak mods,
@@ -204,7 +204,7 @@ here real_mods lost state for 'physical left shift'.
weak_mods is ORed with real_mods when keyboard report is sent.
https://github.com/tmk/tmk_core/blob/master/common/action_util.c#L57
## Timer functionality
## Timer Functionality
It's possible to start timers and read values for time-specific events - here's an example:

View File

@@ -13,11 +13,11 @@ People often define custom names using `#define`. For example:
This will allow you to use `FN_CAPS` and `ALT_TAB` in your `KEYMAP()`, keeping it more readable.
### Limits of these aliases
### Limits of These Aliases
Currently, the keycodes able to used with these functions are limited to the [Basic Keycodes](keycodes_basic.md), meaning you can't use keycodes like `KC_TILD`, or anything greater than 0xFF. For a full list of the keycodes able to be used see [Basic Keycodes](keycodes_basic.md).
# Switching and toggling layers
# Switching and Toggling Layers
These functions allow you to activate layers in various ways.
@@ -27,7 +27,7 @@ These functions allow you to activate layers in various ways.
* `TO(layer)` - Goes to a layer. This code is special, because it lets you go either up or down the stack -- just goes directly to the layer you want. So while other codes only let you go _up_ the stack (from layer 0 to layer 3, for example), `TO(2)` is going to get you to layer 2, no matter where you activate it from -- even if you're currently on layer 5. This gets activated on keydown (as soon as the key is pressed).
* `TT(layer)` - Layer Tap-Toggle. If you hold the key down, the layer becomes active, and then deactivates when you let go. And if you tap it, the layer simply becomes active (toggles on). It needs 5 taps by default, but you can set it by defining `TAPPING_TOGGLE`, for example, `#define TAPPING_TOGGLE 2` for just two taps.
# Working With Layers
# Working with Layers
Care must be taken when switching layers, it's possible to lock yourself into a layer with no way to deactivate that layer (without unplugging your keyboard.) We've created some guidelines to help users avoid the most common problems.
@@ -41,7 +41,7 @@ If you are just getting started with QMK you will want to keep everything simple
### Intermediate Users
Sometimes you need more than one base layer. For example, if you want to switch between QWERTY and Dvorak, switch between layouts for different countries, or switch your layout for different videogames. Your base layers should always be the lowest numbered layers. When you have multiple base layers you should always treat them as mutually exclusive. When one base layer is on the others are off.
Sometimes you need more than one base layer. For example, if you want to switch between QWERTY and Dvorak, switch between layouts for different countries, or switch your layout for different videogames. Your base layers should always be the lowest numbered layers. When you have multiple base layers you should always treat them as mutually exclusive. When one base layer is on the others are off.
### Advanced Users
@@ -51,7 +51,7 @@ Layers stack on top of each other in numerical order. When determining what a ke
Sometimes, you might want to switch between layers in a macro or as part of a tap dance routine. `layer_on` activates a layer, and `layer_off` deactivates it. More layer-related functions can be found in [action_layer.h](../tmk_core/common/action_layer.h).
# Modifier keys
# Modifier Keys
These functions allow you to combine a mod with a keycode. When pressed the keydown for the mod will be sent first, and then *kc* will be sent. When released the keyup for *kc* will be sent and then the mod will be sent.
@@ -75,29 +75,29 @@ You can also chain these, like this:
The following shortcuts automatically add `LSFT()` to keycodes to get commonly used symbols.
|Name|Description|
|----|-----------|
| KC_TILD | ~ |
| KC_EXLM | ! |
| KC_QUES | ? |
| KC_AT | @ |
| KC_HASH | # |
| KC_DLR | $ |
| KC_PERC | % |
| KC_CIRC | ^ |
| KC_AMPR | & |
| KC_ASTR | * |
| KC_LPRN | ( |
| KC_RPRN | ) |
| KC_UNDS | _ |
| KC_PLUS | + |
| KC_DQUO | " |
| KC_LCBR | { |
| KC_RCBR | } |
| KC_LABK | < |
| KC_RABK | > |
| KC_PIPE | &#x7C; |
| KC_COLN | : |
|Key |Aliases |Description |
|------------------------|------------------|-------------------|
|`KC_TILDE` |`KC_TILD` |`~` |
|`KC_EXCLAIM` |`KC_EXLM` |`!` |
|`KC_AT` | |`@` |
|`KC_HASH` | |`#` |
|`KC_DOLLAR` |`KC_DLR` |`$` |
|`KC_PERCENT` |`KC_PERC` |`%` |
|`KC_CIRCUMFLEX` |`KC_CIRC` |`^` |
|`KC_AMPERSAND` |`KC_AMPR` |`&` |
|`KC_ASTERISK` |`KC_ASTR` |`*` |
|`KC_LEFT_PAREN` |`KC_LPRN` |`(` |
|`KC_RIGHT_PAREN` |`KC_RPRN` |`)` |
|`KC_UNDERSCORE` |`KC_UNDS` |`_` |
|`KC_PLUS` | |`+` |
|`KC_LEFT_CURLY_BRACE` |`KC_LCBR` |`{` |
|`KC_RIGHT_CURLY_BRACE` |`KC_RCBR` |`}` |
|`KC_PIPE` | |<code>&#124;</code>|
|`KC_COLON` |`KC_COLN` |`:` |
|`KC_DOUBLE_QUOTE` |`KC_DQT`/`KC_DQUO`|`"` |
|`KC_LEFT_ANGLE_BRACKET` |`KC_LT`/`KC_LABK` |`<` |
|`KC_RIGHT_ANGLE_BRACKET`|`KC_GT`/`KC_RABK` |`>` |
|`KC_QUESTION` |`KC_QUES` |`?` |
# Mod Tap

View File

@@ -47,9 +47,9 @@ PLAY_LOOP(my_song);
It's advised that you wrap all audio features in `#ifdef AUDIO_ENABLE` / `#endif` to avoid causing problems when audio isn't built into the keyboard.
## Music mode
## Music Mode
The music mode maps your columns to a chromatic scale, and your rows to octaves. This works best with ortholinear keyboards, but can be made to work with others. All keycodes less than `0xFF` get blocked, so you won't type while playing notes - if you have special keys/mods, those will still work. A work-around for this is to jump to a different layer with KC_NOs before (or after) enabling music mode.
The music mode maps your columns to a chromatic scale, and your rows to octaves. This works best with ortholinear keyboards, but can be made to work with others. All keycodes less than `0xFF` get blocked, so you won't type while playing notes - if you have special keys/mods, those will still work. A work-around for this is to jump to a different layer with KC_NOs before (or after) enabling music mode.
Recording is experimental due to some memory issues - if you experience some weird behavior, unplugging/replugging your keyboard will fix things.
@@ -82,7 +82,7 @@ The pitch standard (`PITCH_STANDARD_A`) is 440.0f by default - to change this, a
#define PITCH_STANDARD_A 432.0f
## MIDI functionalty
## MIDI Functionality
This is still a WIP, but check out `quantum/keymap_midi.c` to see what's happening. Enable from the Makefile.

View File

@@ -1,4 +1,4 @@
# Auto Shift: Why do we need a shift key?
# Auto Shift: Why Do We Need a Shift Key?
Tap a key and you get its character. Tap a key, but hold it *slightly* longer
and you get its shifted state. Viola! No shift key needed!
@@ -10,7 +10,7 @@ fingers repetitively long distances. For us on the keyboard, the pinky does that
all too often when reaching for the shift key. Auto Shift looks to alleviate that
problem.
## How does it work?
## How Does It Work?
When you tap a key, it stays depressed for a short period of time before it is
then released. This depressed time is a different length for everyone. Auto Shift
@@ -20,7 +20,7 @@ when you release the key. If the time depressed is greater than or equal to the
`AUTO_SHIFT_TIMEOUT`, then a shifted version of the key is emitted. If the time
is less than the `AUTO_SHIFT_TIMEOUT` time, then the normal state is emitted.
## Are there limitations to Auto Shift?
## Are There Limitations to Auto Shift?
Yes, unfortunately.
@@ -38,7 +38,7 @@ Yes, unfortunately.
tapping the keys, but really we have held it for a little longer than
anticipated.
## How do I enable Auto Shift?
## How Do I Enable Auto Shift?
Add to your `rules.mk` in the keymap folder:
@@ -66,7 +66,7 @@ A sample is
#endif
### AUTO_SHIFT_TIMEOUT (value in ms)
### AUTO_SHIFT_TIMEOUT (Value in ms)
This controls how long you have to hold a key before you get the shifted state.
Obviously, this is different for everyone. For the common person, a setting of
@@ -75,7 +75,7 @@ is the default value. Then work down from there. The idea is to have the shortes
Play with this value until things are perfect. Many find that all will work well
at a given value, but one or two keys will still emit the shifted state on
occassion. This is simply due to habit and holding some keys a little longer
occasion. This is simply due to habit and holding some keys a little longer
than others. Once you find this value, work on tapping your problem keys a little
quicker than normal and you will be set.
@@ -86,7 +86,7 @@ quick. See "Auto Shift Setup" for more details!
### NO_AUTO_SHIFT_SPECIAL (simple define)
Do not Auto Shift special keys, which include -_, =+, [{, ]}, ;:, '", ,<, .>,
Do not Auto Shift special keys, which include -\_, =+, [{, ]}, ;:, '", ,<, .>,
and /?
### NO_AUTO_SHIFT_NUMERIC (simple define)
@@ -99,7 +99,7 @@ Do not Auto Shift alpha characters, which include A through Z.
## Using Auto Shift Setup
This will enable you to define three keys temporailiy to increase, decrease and report your `AUTO_SHIFT_TIMEOUT`.
This will enable you to define three keys temporarily to increase, decrease and report your `AUTO_SHIFT_TIMEOUT`.
### Setup
@@ -134,7 +134,7 @@ completely normal and with no intention of shifted keys.
9. Remove the key bindings `KC_ASDN`, `KC_ASUP` and `KC_ASRP`.
10. Compile and upload your new firmware.
#### An example run
#### An Example Run
hello world. my name is john doe. i am a computer programmer playing with
keyboards right now.
@@ -155,4 +155,4 @@ completely normal and with no intention of shifted keys.
The keyboard typed `115` which represents your current `AUTO_SHIFT_TIMEOUT`
value. You are now set! Practice on the *D* key a little bit that showed up
in the testing and you'll be golden.
in the testing and you'll be golden.

View File

@@ -6,12 +6,12 @@
These keycodes control the backlight. Most keyboards use this for single color in-switch lighting.
|Name|Description|
|----|-----------|
|`BL_x`|Set a specific backlight level between 0-9|
|`BL_ON`|An alias for `BL_9`|
|`BL_OFF`|An alias for `BL_0`|
|`BL_DEC`|Turn the backlight level down by 1|
|`BL_INC`|Turn the backlight level up by 1|
|`BL_TOGG`|Toggle the backlight on or off|
|`BL_STEP`|Step through backlight levels, wrapping around to 0 when you reach the top.|
|Key |Description |
|---------|------------------------------------------|
|`BL_TOGG`|Turn the backlight on or off |
|`BL_STEP`|Cycle through backlight levels |
|`BL_x` |Set a specific backlight level between 0-9|
|`BL_ON` |An alias for `BL_9` |
|`BL_OFF` |An alias for `BL_0` |
|`BL_INC` |Increase backlight level |
|`BL_DEC` |Decrease backlight level |

View File

@@ -1,6 +1,6 @@
# Bluetooth
## Bluetooth functionality
## Bluetooth Functionality
This requires [some hardware changes](https://www.reddit.com/r/MechanicalKeyboards/comments/3psx0q/the_planck_keyboard_with_bluetooth_guide_and/?ref=search_posts), but can be enabled via the Makefile. The firmware will still output characters via USB, so be aware of this when charging via a computer. It would make sense to have a switch on the Bluefruit to turn it off at will.
@@ -10,8 +10,8 @@ This requires [some hardware changes](https://www.reddit.com/r/MechanicalKeyboar
This is used when multiple keyboard outputs can be selected. Currently this only allows for switching between USB and Bluetooth on keyboards that support both.
|Name|Description|
|----|-----------|
|`OUT_AUTO`|auto mode|
|`OUT_USB`|usb only|
|`OUT_BT`|bluetooth|
|Name |Description |
|----------|----------------------------------------------|
|`OUT_AUTO`|Automatically switch between USB and Bluetooth|
|`OUT_USB` |USB only |
|`OUT_BT` |Bluetooth only |

View File

@@ -6,24 +6,24 @@
Shortcuts for bootmagic options. You can use these even when bootmagic is off.
|Name|Description|
|----|-----------|
|`MAGIC_SWAP_CONTROL_CAPSLOCK`|Swap Capslock and Left Control|
|`MAGIC_CAPSLOCK_TO_CONTROL`|Treat Capslock like a Control Key|
|`MAGIC_SWAP_LALT_LGUI`|Swap the left Alt and GUI keys|
|`MAGIC_SWAP_RALT_RGUI`|Swap the right Alt and GUI keys|
|`MAGIC_NO_GUI`|Disable the GUI key|
|`MAGIC_SWAP_GRAVE_ESC`|Swap the Grave and Esc key.|
|`MAGIC_SWAP_BACKSLASH_BACKSPACE`|Swap backslash and backspace|
|`MAGIC_HOST_NKRO`|Force NKRO on|
|`MAGIC_SWAP_ALT_GUI`/`AG_SWAP`|Swap Alt and Gui on both sides|
|`MAGIC_UNSWAP_CONTROL_CAPSLOCK`|Disable the Control/Capslock swap|
|`MAGIC_UNCAPSLOCK_TO_CONTROL`|Disable treating Capslock like Control |
|`MAGIC_UNSWAP_LALT_LGUI`|Disable Left Alt and GUI switching|
|`MAGIC_UNSWAP_RALT_RGUI`|Disable Right Alt and GUI switching|
|`MAGIC_UNNO_GUI`|Enable the GUI key |
|`MAGIC_UNSWAP_GRAVE_ESC`|Disable the Grave/Esc swap |
|`MAGIC_UNSWAP_BACKSLASH_BACKSPACE`|Disable the backslash/backspace swap|
|`MAGIC_UNHOST_NKRO`|Force NKRO off|
|`MAGIC_UNSWAP_ALT_GUI`/`AG_NORM`|Disable the Alt/GUI switching|
|`MAGIC_TOGGLE_NKRO`|Turn NKRO on or off|
|Key |Aliases |Description |
|----------------------------------|---------|------------------------------------|
|`MAGIC_SWAP_CONTROL_CAPSLOCK` | |Swap Left Control and Caps Lock |
|`MAGIC_CAPSLOCK_TO_CONTROL` | |Treat Caps Lock as Control |
|`MAGIC_SWAP_LALT_LGUI` | |Swap Left Alt and GUI |
|`MAGIC_SWAP_RALT_RGUI` | |Swap Right Alt and GUI |
|`MAGIC_NO_GUI` | |Disable the GUI key |
|`MAGIC_SWAP_GRAVE_ESC` | |Swap <code>&#96;</code> and Escape |
|`MAGIC_SWAP_BACKSLASH_BACKSPACE` | |Swap Backslash and Backspace |
|`MAGIC_HOST_NKRO` | |Force NKRO on |
|`MAGIC_SWAP_ALT_GUI` |`AG_SWAP`|Swap Alt and GUI on both sides |
|`MAGIC_UNSWAP_CONTROL_CAPSLOCK` | |Unswap Left Control and Caps Lock |
|`MAGIC_UNCAPSLOCK_TO_CONTROL` | |Stop treating CapsLock as Control |
|`MAGIC_UNSWAP_LALT_LGUI` | |Unswap Left Alt and GUI |
|`MAGIC_UNSWAP_RALT_RGUI` | |Unswap Right Alt and GUI |
|`MAGIC_UNNO_GUI` | |Enable the GUI key |
|`MAGIC_UNSWAP_GRAVE_ESC` | |Unswap <code>&#96;</code> and Escape|
|`MAGIC_UNSWAP_BACKSLASH_BACKSPACE`| |Unswap Backslash and Backspace |
|`MAGIC_UNHOST_NKRO` | |Force NKRO off |
|`MAGIC_UNSWAP_ALT_GUI` |`AG_NORM`|Unswap Left Alt and GUI |
|`MAGIC_TOGGLE_NKRO` | |Turn NKRO on or off |

View File

@@ -1,4 +1,4 @@
# Dynamic macros: record and replay macros in runtime
# Dynamic Macros: Record and Replay Macros in Runtime
QMK supports temporary macros created on the fly. We call these Dynamic Macros. They are defined by the user from the keyboard and are lost when the keyboard is unplugged or otherwise rebooted.
@@ -52,7 +52,7 @@ For users of the earlier versions of dynamic macros: It is still possible to fin
```c
uint16_t macro_kc = (keycode == MO(_DYN) ? DYN_REC_STOP : keycode);
if (!process_record_dynamic_macro(macro_kc, record)) {
return false;
}

View File

@@ -1,11 +1,11 @@
# Grave Escape
Grave Escape is a feature that allows you to share the grave key (`\`` and `~`) on the same key as Escape. When `KC_GESC` is used it will act as `KC_ESC`, unless Shift or GUI is pressed, in which case it will act as `KC_GRAVE`.
Grave Escape is a feature that allows you to share the grave key (<code>&#96;</code> and `~`) on the same key as Escape. When `KC_GESC` is used it will act as `KC_ESC`, unless Shift or GUI is pressed, in which case it will act as `KC_GRAVE`.
| Key | Alias | Description |
|-----|-------|-------------|
| `GRAVE_ESC` | `KC_GESC` | Act as `KC_ESC` normally, or `KC_GRAVE` when GUI or Shift are held. |
|Key |Aliases |Description |
|---------|-----------|------------------------------------------------------------------|
|`KC_GESC`|`GRAVE_ESC`|Escape when pressed, <code>&#96;</code> when Shift or GUI are held|
There are several possible key combinations this will break, among them Ctrl+Shift+Esc on Windows and Cmd+Opt+Esc on macOS. You can use these options in your `config.h` to work around this:

View File

@@ -1,4 +1,4 @@
## Key Lock: Holding down keys for you
## Key Lock: Holding Down Keys for You
Sometimes, you need to hold down a specific key for a long period of time. Whether this is while typing in ALL CAPS, or playing a video game that hasn't implemented auto-run, Key Lock is here to help. Key Lock adds a new keycode, `KC_LOCK`, that will hold down the next key you hit for you. The key is released when you hit it again. Here's an example: let's say you need to type in all caps for a few sentences. You hit KC_LOCK, and then shift. Now, shift will be considered held until you hit it again. You can think of key lock as caps lock, but supercharged.

View File

@@ -1,6 +1,6 @@
# Layouts: Using a keymap with multiple keyboards
# Layouts: Using a Keymap with Multiple Keyboards
The `layouts/` folder contains different physical key layouts that can apply to different keyboards.
The `layouts/` folder contains different physical key layouts that can apply to different keyboards.
```
layouts/
@@ -21,7 +21,7 @@ layouts/
| + ...
```
The `layouts/default/` and `layouts/community/` are two examples of layout "repositories" - currently `default` will contain all of the information concerning the layout, and one default keymap named `default_<layout>`, for users to use as a reference. `community` contains all of the community keymaps, with the eventual goal of being split-off into a separate repo for users to clone into `layouts/`. QMK searches through all folders in `layouts/`, so it's possible to have multiple reposistories here.
The `layouts/default/` and `layouts/community/` are two examples of layout "repositories" - currently `default` will contain all of the information concerning the layout, and one default keymap named `default_<layout>`, for users to use as a reference. `community` contains all of the community keymaps, with the eventual goal of being split-off into a separate repo for users to clone into `layouts/`. QMK searches through all folders in `layouts/`, so it's possible to have multiple repositories here.
Each layout folder is named (`[a-z0-9_]`) after the physical aspects of the layout, in the most generic way possible, and contains a `readme.md` with the layout to be defined by the keyboard:
@@ -33,9 +33,9 @@ Each layout folder is named (`[a-z0-9_]`) after the physical aspects of the layo
New names should try to stick to the standards set by existing layouts, and can be discussed in the PR/Issue.
## Supporting a layout
## Supporting a Layout
For a keyboard to support a layout, the variable (`[a-z0-9_]`) must be defined in it's `<keyboard>.h`, and match the number of arguments/keys (and preferrably the physical layout):
For a keyboard to support a layout, the variable (`[a-z0-9_]`) must be defined in it's `<keyboard>.h`, and match the number of arguments/keys (and preferably the physical layout):
#define LAYOUT_60_ansi KEYMAP_ANSI
@@ -49,7 +49,7 @@ The folder name must be added to the keyboard's `rules.mk`:
but the `LAYOUT_<layout>` variable must be defined in `<folder>.h` as well.
## Tips for making layouts keyboard-agnostic
## Tips for Making Layouts Keyboard-Agnostic
Instead of using `#include "planck.h"`, you can use this line to include whatever `<keyboard>.h` (`<folder>.h` should not be included here) file that is being compiled:

View File

@@ -1,4 +1,4 @@
# The Leader key: A new kind of modifier
# The Leader Key: A New Kind of Modifier
If you've ever used Vim, you know what a Leader key is. If not, you're about to discover a wonderful concept. :) Instead of hitting Alt+Shift+W for example (holding down three keys at the same time), what if you could hit a _sequence_ of keys instead? So you'd hit our special modifier (the Leader key), followed by W and then C (just a rapid succession of keys), and something would happen.
@@ -34,4 +34,4 @@ void matrix_scan_user(void) {
}
```
As you can see, you have three function. you can use - `SEQ_ONE_KEY` for single-key sequences (Leader followed by just one key), and `SEQ_TWO_KEYS` and `SEQ_THREE_KEYS` for longer sequences. Each of these accepts one or more keycodes as arguments. This is an important point: You can use keycodes from **any layer on your keyboard**. That layer would need to be active for the leader macro to fire, obviously.
As you can see, you have three function. you can use - `SEQ_ONE_KEY` for single-key sequences (Leader followed by just one key), and `SEQ_TWO_KEYS` and `SEQ_THREE_KEYS` for longer sequences. Each of these accepts one or more keycodes as arguments. This is an important point: You can use keycodes from **any layer on your keyboard**. That layer would need to be active for the leader macro to fire, obviously.

View File

@@ -1,12 +1,12 @@
# Macros
Macros allow you to send multiple keystrokes when pressing just one key. QMK has a number of ways to define and use macros. These can do anything you want: type common phrases for you, copypasta, repetitive game movements, or even help you code.
Macros allow you to send multiple keystrokes when pressing just one key. QMK has a number of ways to define and use macros. These can do anything you want: type common phrases for you, copypasta, repetitive game movements, or even help you code.
{% hint style='danger' %}
**Security Note**: While it is possible to use macros to send passwords, credit card numbers, and other sensitive information it is a supremely bad idea to do so. Anyone who gets ahold of your keyboard will be able to access that information by opening a text editor.
**Security Note**: While it is possible to use macros to send passwords, credit card numbers, and other sensitive information it is a supremely bad idea to do so. Anyone who gets a hold of your keyboard will be able to access that information by opening a text editor.
{% endhint %}
## The new way: `SEND_STRING()` & `process_record_user`
## The New Way: `SEND_STRING()` & `process_record_user`
Sometimes you just want a key to type out words or phrases. For the most common situations we've provided `SEND_STRING()`, which will type out your string (i.e. a sequence of characters) for you. All ASCII characters that are easily translated to a keycode are supported (e.g. `\n\t`).
@@ -75,7 +75,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
### TAP, DOWN and UP
You may want to use keys in your macros that you can't write down, such as `Ctrl` or `Home`.
You can send arbitary keycodes by wrapping them in:
You can send arbitrary keycodes by wrapping them in:
* `SS_TAP()` presses and releases a key.
* `SS_DOWN()` presses (but does not release) a key.
@@ -105,13 +105,13 @@ They can be used like this:
Which would send LCTRL+a (LCTRL down, a, LCTRL up) - notice that they take strings (eg `"k"`), and not the `X_K` keycodes.
### Alternative keymaps
### Alternative Keymaps
By default, it assumes a US keymap with a QWERTY layout; if you want to change that (e.g. if your OS uses software Colemak), include this somewhere in your keymap:
#include <sendstring_colemak.h>
### Strings in memory
### Strings in Memory
If for some reason you're manipulating strings and need to print out something you just generated (instead of being a literal, constant string), you can use `send_string()`, like this:
@@ -129,7 +129,7 @@ send_string(my_str);
SEND_STRING(".."SS_TAP(X_END));
```
## The old way: `MACRO()` & `action_get_macro`
## The Old Way: `MACRO()` & `action_get_macro`
{% hint style='info' %}
This is inherited from TMK, and hasn't been updated - it's recommend that you use `SEND_STRING` and `process_record_user` instead.
@@ -166,7 +166,7 @@ A macro can include the following commands:
* W() wait (milliseconds).
* END end mark.
### Mapping a Macro to a key
### Mapping a Macro to a Key
Use the `M()` function within your `KEYMAP()` to call a macro. For example, here is the keymap for a 2-key keyboard:
@@ -192,7 +192,7 @@ const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt) {
When you press the key on the left it will type "Hi!" and when you press the key on the right it will type "Bye!".
### Naming your macros
### Naming Your Macros
If you have a bunch of macros you want to refer to from your keymap while keeping the keymap easily readable you can name them using `#define` at the top of your file.
@@ -207,7 +207,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
};
```
## Advanced macro functions
## Advanced Macro Functions
There are some functions you may find useful in macro-writing. Keep in mind that while you can write some fairly advanced code within a macro if your functionality gets too complex you may want to define a custom keycode instead. Macros are meant to be simple.
@@ -243,9 +243,9 @@ This will clear all mods currently pressed.
This will clear all keys besides the mods currently pressed.
## Advanced Example: Single-key copy/paste
## Advanced Example: Single-Key Copy/Paste
This example defines a macro which sends `Ctrl-C` when pressed down, and `Ctrl-V` when released.
This example defines a macro which sends `Ctrl-C` when pressed down, and `Ctrl-V` when released.
```c
const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt) {
@@ -262,5 +262,3 @@ const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt) {
return MACRO_NONE;
};
```

View File

@@ -3,11 +3,11 @@
Mousekeys is a feature that allows you to emulate a mouse using your keyboard. You can move the pointer around, click up to 5 buttons, and even scroll in all 4 directions. QMK uses the same algorithm as the X Window System MouseKeysAccel feature. You can read more about it [on Wikipedia](https://en.wikipedia.org/wiki/Mouse_keys).
## Adding Mousekeys To a Keymap
## Adding Mousekeys to a Keymap
There are two steps to adding Mousekeys support to your keyboard. You must enable support in the Makefile and you must map mouse actions to keys on your keyboard.
### Adding Mousekeys support in the `Makefile`
### Adding Mousekeys Support in the `Makefile`
To add support for Mousekeys you simply need to add a single line to your keymap's `Makefile`:
@@ -17,34 +17,34 @@ MOUSEKEY_ENABLE = yes
You can see an example here: https://github.com/qmk/qmk_firmware/blob/master/keyboards/clueboard/keymaps/mouse_keys/Makefile
### Mapping Mouse Actions To Keyboard Keys
### Mapping Mouse Actions to Keyboard Keys
You can use these keycodes within your keymap to map button presses to mouse actions:
|Long Name|Short Name|Description|
|---------|----------|-----------|
|KC_MS_UP|KC_MS_U|Mouse Cursor Up|
|KC_MS_DOWN|KC_MS_D|Mouse Cursor Down|
|KC_MS_LEFT|KC_MS_L|Mouse Cursor Left|
|KC_MS_RIGHT|KC_MS_R|Mouse Cursor Right|
|KC_MS_BTN1|KC_BTN1|Mouse Button 1|
|KC_MS_BTN2|KC_BTN2|Mouse Button 2|
|KC_MS_BTN3|KC_BTN3|Mouse Button 3|
|KC_MS_BTN4|KC_BTN4|Mouse Button 4|
|KC_MS_BTN5|KC_BTN5|Mouse Button 5|
|KC_MS_WH_UP|KC_WH_U|Mouse Wheel Up|
|KC_MS_WH_DOWN|KC_WH_D|Mouse Wheel Down|
|KC_MS_WH_LEFT|KC_WH_L|Mouse Wheel Left|
|KC_MS_WH_RIGHT|KC_WH_R|Mouse Wheel Right|
|KC_MS_ACCEL0|KC_ACL0|Set Mouse Acceleration Speed to 0|
|KC_MS_ACCEL1|KC_ACL1|Set Mouse Acceleration Speed to 1|
|KC_MS_ACCEL2|KC_ACL2|Set Mouse Acceleration Speed to 2|
|Key |Aliases |Description |
|----------------|---------|---------------------------|
|`KC_MS_UP` |`KC_MS_U`|Mouse Cursor Up |
|`KC_MS_DOWN` |`KC_MS_D`|Mouse Cursor Down |
|`KC_MS_LEFT` |`KC_MS_L`|Mouse Cursor Left |
|`KC_MS_RIGHT` |`KC_MS_R`|Mouse Cursor Right |
|`KC_MS_BTN1` |`KC_BTN1`|Mouse Button 1 |
|`KC_MS_BTN2` |`KC_BTN2`|Mouse Button 2 |
|`KC_MS_BTN3` |`KC_BTN3`|Mouse Button 3 |
|`KC_MS_BTN4` |`KC_BTN4`|Mouse Button 4 |
|`KC_MS_BTN5` |`KC_BTN5`|Mouse Button 5 |
|`KC_MS_WH_UP` |`KC_WH_U`|Mouse Wheel Up |
|`KC_MS_WH_DOWN` |`KC_WH_D`|Mouse Wheel Down |
|`KC_MS_WH_LEFT` |`KC_WH_L`|Mouse Wheel Left |
|`KC_MS_WH_RIGHT`|`KC_WH_R`|Mouse Wheel Right |
|`KC_MS_ACCEL0` |`KC_ACL0`|Set mouse acceleration to 0|
|`KC_MS_ACCEL1` |`KC_ACL1`|Set mouse acceleration to 1|
|`KC_MS_ACCEL2` |`KC_ACL2`|Set mouse acceleration to 2|
You can see an example in the `_ML` here: https://github.com/qmk/qmk_firmware/blob/master/keyboards/clueboard/keymaps/mouse_keys/keymap.c#L46
## Configuring the behavior of Mousekeys
## Configuring the Behavior of Mousekeys
The default speed for controlling the mouse with the keyboard is intentionaly slow. You can adjust these parameters by adding these settings to your keymap's `config.h` file. All times are specified in miliseconds (ms).
The default speed for controlling the mouse with the keyboard is intentionally slow. You can adjust these parameters by adding these settings to your keymap's `config.h` file. All times are specified in milliseconds (ms).
```
#define MOUSEKEY_DELAY 300
@@ -78,4 +78,4 @@ The top speed for scrolling movements.
### `MOUSEKEY_WHEEL_TIME_TO_MAX`
How long you want to hold down a scroll key for until `MOUSEKEY_WHEEL_MAX_SPEED` is reached. This controls how quickling your scrolling will accelerate.
How long you want to hold down a scroll key for until `MOUSEKEY_WHEEL_MAX_SPEED` is reached. This controls how quickly your scrolling will accelerate.

View File

@@ -1,6 +1,6 @@
## Pointing Device
Pointing Device is a generic name for a feature intended to be generic: moving the system pointer arround. There are certainly other options for it - like mousekeys - but this aims to be easily modifiable and lightweight. You can implement custom keys to control functionality, or you can gather information from other peripherals and insert it directly here - let QMK handle the processing for you.
Pointing Device is a generic name for a feature intended to be generic: moving the system pointer around. There are certainly other options for it - like mousekeys - but this aims to be easily modifiable and lightweight. You can implement custom keys to control functionality, or you can gather information from other peripherals and insert it directly here - let QMK handle the processing for you.
To enable Pointing Device, uncomment the following line in your rules.mk:
@@ -44,4 +44,4 @@ case MS_SPECIAL:
break;
```
Recall that the mouse report is set to zero (except the buttons) whenever it is sent, so the scrolling would only occur once in each case.
Recall that the mouse report is set to zero (except the buttons) whenever it is sent, so the scrolling would only occur once in each case.

View File

@@ -6,7 +6,7 @@ To hook up a Trackpoint, you need to obtain a Trackpoint module (i.e. harvest fr
There are three available modes for hooking up PS/2 devices: USART (best), interrupts (better) or busywait (not recommended).
### Busywait version
### Busywait Version
Note: This is not recommended, you may encounter jerky movement or unsent inputs. Please use interrupt or USART version if possible.
@@ -32,7 +32,7 @@ In your keyboard config.h:
#endif
```
### Interrupt version
### Interrupt Version
The following example uses D2 for clock and D5 for data. You can use any INT or PCINT pin for clock, and any pin for data.
@@ -70,7 +70,7 @@ In your keyboard config.h:
#endif
```
### USART version
### USART Version
To use USART on the ATMega32u4, you have to use PD5 for clock and PD2 for data. If one of those are unavailable, you need to use interrupt version.
@@ -129,13 +129,13 @@ In your keyboard config.h:
### Additional Settings
#### PS/2 mouse features
#### PS/2 Mouse Features
These enable settings supported by the PS/2 mouse protocol: http://www.computer-engineering.org/ps2mouse/
```
/* Use remote mode instead of the default stream mode (see link) */
#define PS2_MOUSE_USE_REMOTE_MODE
#define PS2_MOUSE_USE_REMOTE_MODE
/* Enable the scrollwheel or scroll gesture on your mouse or touchpad */
#define PS2_MOUSE_ENABLE_SCROLLING
@@ -170,7 +170,7 @@ void ps2_mouse_set_resolution(ps2_mouse_resolution_t resolution);
void ps2_mouse_set_sample_rate(ps2_mouse_sample_rate_t sample_rate);
```
#### Fine control
#### Fine Control
Use the following defines to change the sensitivity and speed of the mouse.
Note: you can also use `ps2_mouse_set_resolution` for the same effect (not supported on most touchpads).
@@ -181,7 +181,7 @@ Note: you can also use `ps2_mouse_set_resolution` for the same effect (not suppo
#define PS2_MOUSE_V_MULTIPLIER 1
```
#### Scroll button
#### Scroll Button
If you're using a trackpoint, you will likely want to be able to use it for scrolling.
Its possible to enable a "scroll button/s" that when pressed will cause the mouse to scroll instead of moving.
@@ -227,7 +227,7 @@ Fine control over the scrolling is supported with the following defines:
#define PS2_MOUSE_SCROLL_DIVISOR_V 2
```
#### Invert mouse and scroll axes
#### Invert Mouse and Scroll Axes
To invert the X and Y axes you can put:
@@ -247,7 +247,7 @@ To reverse the scroll axes you can put:
into config.h.
#### Debug settings
#### Debug Settings
To debug the mouse, add `debug_mouse = true` or enable via bootmagic.

View File

@@ -80,7 +80,7 @@ const uint8_t RGBLED_KNIGHT_INTERVALS[] PROGMEM = {127, 63, 31};
const uint16_t RGBLED_GRADIENT_RANGES[] PROGMEM = {360, 240, 180, 120, 90};
```
### LED control
### LED Control
Look in `rgblights.h` for all available functions, but if you want to control all or some LEDs your goto functions are:
@@ -98,25 +98,25 @@ rgblight_sethsv_at(h,s,v, LED); // control a single LED. 0 <= LED < RGBLED_NUM
These control the RGB Lighting functionality.
| Long Name | Short Name | Description |
|-----------|------------|-------------|
||`RGB_TOG`|toggle on/off|
|`RGB_MODE_FORWARD`|`RGB_MOD`|cycle through modes, use reverse direction when shift is held|
|`RGB_MODE_REVERSE`|`RGB_RMOD`|cycle through modes in reverse (also suppost shift to go forward)|
||`RGB_HUI`|hue increase|
||`RGB_HUD`|hue decrease|
||`RGB_SAI`|saturation increase|
||`RGB_SAD`|saturation decrease|
||`RGB_VAI`|value (brightness) increase|
||`RGB_VAD`|value (brightness) decrease|
|`RGB_MODE_PLAIN`|`RGB_M_P `| Switch to the static no animation mode |
|`RGB_MODE_BREATHE`|`RGB_M_B`| Switch to the breathing mode |
|`RGB_MODE_RAINBOW`|`RGB_M_R`| Switch to the rainbow mode ||
|`RGB_MODE_SWIRL`|`RGB_M_SW`| Switch to the swirl mode |
|`RGB_MODE_SNAKE`|`RGB_M_SN`| Switch to the snake mode |
|`RGB_MODE_KNIGHT`|`RGB_M_K`| Switch to the knight animation |
|`RGB_MODE_XMAS`|`RGB_M_X`| Switch to the Christmas animation |
|`RGB_MODE_GRADIENT`|`RGB_M_G`| Switch to the static gradient mode |
|Key |Aliases |Description |
|-------------------|----------|--------------------------------------------------------------------|
|`RGB_TOG` | |Toggle RGB lighting on or off |
|`RGB_MODE_FORWARD` |`RGB_MOD` |Cycle through modes, reverse direction when Shift is held |
|`RGB_MODE_REVERSE` |`RGB_RMOD`|Cycle through modes in reverse, forward direction when Shift is held|
|`RGB_HUI` | |Increase hue |
|`RGB_HUD` | |Decrease hue |
|`RGB_SAI` | |Increase saturation |
|`RGB_SAD` | |Decrease saturation |
|`RGB_VAI` | |Increase value (brightness) |
|`RGB_VAD` | |Decrease value (brightness) |
|`RGB_MODE_PLAIN` |`RGB_M_P `|Static (no animation) mode |
|`RGB_MODE_BREATHE` |`RGB_M_B` |Breathing animation mode |
|`RGB_MODE_RAINBOW` |`RGB_M_R` |Rainbow animation mode |
|`RGB_MODE_SWIRL` |`RGB_M_SW`|Swirl animation mode |
|`RGB_MODE_SNAKE` |`RGB_M_SN`|Snake animation mode |
|`RGB_MODE_KNIGHT` |`RGB_M_K` |"Knight Rider" animation mode |
|`RGB_MODE_XMAS` |`RGB_M_X` |Christmas animation mode |
|`RGB_MODE_GRADIENT`|`RGB_M_G` |Static gradient animation mode |
note: for backwards compatibility, `RGB_SMOD` is an alias for `RGB_MOD`.

View File

@@ -1,8 +1,8 @@
## Space Cadet Shift: The future, built in
## Space Cadet Shift: The Future, Built In
Steve Losh [described](http://stevelosh.com/blog/2012/10/a-modern-space-cadet/) the Space Cadet Shift quite well. Essentially, you hit the left Shift on its own, and you get an opening parenthesis; hit the right Shift on its own, and you get the closing one. When hit with other keys, the Shift key keeps working as it always does. Yes, it's as cool as it sounds.
To use it, use `KC_LSPO` (Left Shift, Parens Open) for your left Shift on your keymap, and `KC_RSPC` (Right Shift, Parens Close) for your right Shift.
To use it, use `KC_LSPO` (Left Shift, Parenthesis Open) for your left Shift on your keymap, and `KC_RSPC` (Right Shift, Parenthesis Close) for your right Shift.
It's defaulted to work on US keyboards, but if your layout uses different keys for parenthesis, you can define those in your `config.h` like this:

View File

@@ -14,7 +14,7 @@ To use Plover with QMK just enable NKRO and optionally adjust your layout if you
Plover also understands the language of several steno machines. QMK can speak a couple of these languages, TX Bolt and GeminiPR. An example layout can be found in `planck/keymaps/steno`.
When QMK speaks to Plover over a steno protocol Plover will not use the keyboard as input. This means that you can switch back and forth between a standard keyboard and your steno keyboard, or even switch layers from Plover to standard and back without needing to activate/deactive Plover.
When QMK speaks to Plover over a steno protocol Plover will not use the keyboard as input. This means that you can switch back and forth between a standard keyboard and your steno keyboard, or even switch layers from Plover to standard and back without needing to activate/deactivate Plover.
In this mode Plover expects to speak with a steno machine over a serial port so QMK will present itself to the operating system as a virtual serial port in addition to a keyboard. By default QMK will speak the TX Bolt protocol but can be switched to GeminiPR; the last protocol used is stored in non-volatile memory so QMK will use the same protocol on restart.

View File

@@ -1,4 +1,4 @@
# Tap Dance: A single key can do 3, 5, or 100 different things
# Tap Dance: A Single Key Can Do 3, 5, or 100 Different Things
<!-- FIXME: Break this up into multiple sections -->
@@ -78,7 +78,7 @@ enum {
X_TAP_DANCE
};
```
### Example 1: Send `:` on single tap, `;` on double tap
### Example 1: Send `:` on Single Tap, `;` on Double Tap
```c
void dance_cln_finished (qk_tap_dance_state_t *state, void *user_data) {
if (state->count == 1) {
@@ -103,7 +103,7 @@ qk_tap_dance_action_t tap_dance_actions[] = {
[CT_CLN] = ACTION_TAP_DANCE_FN_ADVANCED (NULL, dance_cln_finished, dance_cln_reset)
};
```
### Example 2: Send "Safety Dance!" after 100 taps
### Example 2: Send "Safety Dance!" After 100 Taps
```c
void dance_egg (qk_tap_dance_state_t *state, void *user_data) {
if (state->count >= 100) {
@@ -117,7 +117,7 @@ qk_tap_dance_action_t tap_dance_actions[] = {
};
```
### Example 3: Turn LED lights on then off, one at a time
### Example 3: Turn LED Lights On Then Off, One at a Time
```c
// on each tap, light up one led, from right to left
@@ -150,7 +150,7 @@ void dance_flsh_finished(qk_tap_dance_state_t *state, void *user_data) {
}
}
// if the flash state didnt happen, then turn off leds, left to right
// if the flash state didn't happen, then turn off LEDs, left to right
void dance_flsh_reset(qk_tap_dance_state_t *state, void *user_data) {
ergodox_right_led_1_off();
_delay_ms(50);
@@ -187,9 +187,9 @@ enum {
SINGLE_TAP = 1,
SINGLE_HOLD = 2,
DOUBLE_TAP = 3,
DOUBLE_HOLD = 4,
DOUBLE_HOLD = 4,
DOUBLE_SINGLE_TAP = 5 //send SINGLE_TAP twice - NOT DOUBLE_TAP
// Add more enums here if you want for triple, quadruple, etc.
// Add more enums here if you want for triple, quadruple, etc.
};
typedef struct {
@@ -209,14 +209,14 @@ int cur_dance (qk_tap_dance_state_t *state) {
if (state->interrupted) return DOUBLE_SINGLE_TAP;
else if (state->pressed) return DOUBLE_HOLD;
else return DOUBLE_TAP;
}
}
else return 6; //magic number. At some point this method will expand to work for more presses
}
//**************** Definitions needed for quad function to work *********************//
//instanalize an instance of 'tap' for the 'x' tap dance.
static tap xtap_state = {
static tap xtap_state = {
.is_press_action = true,
.state = 0
};

View File

@@ -14,9 +14,9 @@ When enabled, a `> ` prompt will appear, where you'll be able to type, backspace
`#define TERMINAL_HELP` enables some other output helpers that aren't really needed with this page.
## Future ideas
## Future Ideas
* Keyboard/user-extendable commands
* Keyboard/user-extensible commands
* Smaller footprint
* Arrow key support
* Command history
@@ -30,7 +30,7 @@ When enabled, a `> ` prompt will appear, where you'll be able to type, backspace
* EEPROM read/write
* Audio control
## Current commands
## Current Commands
### `about`
@@ -68,13 +68,13 @@ Prints out the entire keymap for a certain layer
```
> keymap 0
0x002b, 0x0014, 0x001a, 0x0008, 0x0015, 0x0017, 0x001c, 0x0018, 0x000c, 0x0012, 0x0013, 0x002a,
0x0029, 0x0004, 0x0016, 0x0007, 0x0009, 0x000a, 0x000b, 0x000d, 0x000e, 0x000f, 0x0033, 0x0034,
0x00e1, 0x001d, 0x001b, 0x0006, 0x0019, 0x0005, 0x0011, 0x0010, 0x0036, 0x0037, 0x0038, 0x0028,
0x002b, 0x0014, 0x001a, 0x0008, 0x0015, 0x0017, 0x001c, 0x0018, 0x000c, 0x0012, 0x0013, 0x002a,
0x0029, 0x0004, 0x0016, 0x0007, 0x0009, 0x000a, 0x000b, 0x000d, 0x000e, 0x000f, 0x0033, 0x0034,
0x00e1, 0x001d, 0x001b, 0x0006, 0x0019, 0x0005, 0x0011, 0x0010, 0x0036, 0x0037, 0x0038, 0x0028,
0x5cd6, 0x00e0, 0x00e2, 0x00e3, 0x5cd4, 0x002c, 0x002c, 0x5cd5, 0x0050, 0x0051, 0x0052, 0x004f,
>
>
```
### `exit`
Exits the terminal - same as `TERM_OFF`.
Exits the terminal - same as `TERM_OFF`.

View File

@@ -4,7 +4,7 @@
## Thermal Printer Keycodes
|Name|Description|
|----|-----------|
|`PRINT_ON`|Start printing everything the user types|
|`PRINT_OFF`|Stop printing everything the user types|
|Key |Description |
|-----------|----------------------------------------|
|`PRINT_ON` |Start printing everything the user types|
|`PRINT_OFF`|Stop printing everything the user types |

View File

@@ -1,4 +1,4 @@
# Unicode support
# Unicode Support
There are three Unicode keymap definition method available in QMK:
@@ -24,12 +24,12 @@ sort of like macro. Unfortunately, each OS has different ideas on how Unicode is
This is the current list of Unicode input method in QMK:
* UC_OSX: MacOS Unicode Hex Input support. Works only up to 0xFFFF. Disabled by default. To enable: go to System Preferences -> Keyboard -> Input Sources, and enable Unicode Hex.
* UC_OSX_RALT: Same as UC_OSX, but sends the Rigt Alt key for unicode input
* UC_OSX_RALT: Same as UC_OSX, but sends the Right Alt key for unicode input
* UC_LNX: Unicode input method under Linux. Works up to 0xFFFFF. Should work almost anywhere on ibus enabled distros. Without ibus, this works under GTK apps, but rarely anywhere else.
* UC_WIN: (not recommended) Windows built-in Unicode input. To enable: create registry key under `HKEY_CURRENT_USER\Control Panel\Input Method\EnableHexNumpad` of type `REG_SZ` called `EnableHexNumpad`, set its value to 1, and reboot. This method is not recommended because of reliability and compatibility issue, use WinCompose method below instead.
* UC_WINC: Windows Unicode input using WinCompose. Requires [WinCompose](https://github.com/samhocevar/wincompose). Works reliably under many (all?) variations of Windows.
# Additional language support
# Additional Language Support
In `quantum/keymap_extras/`, you'll see various language files - these work the same way as the alternative layout ones do. Most are defined by their two letter country/language code followed by an underscore and a 4-letter abbreviation of its name. `FR_UGRV` which will result in a `ù` when using a software-implemented AZERTY layout. It's currently difficult to send such characters in just the firmware.
@@ -52,4 +52,3 @@ In the default script of AutoHotkey you can define custom hotkeys.
The hotkeys above are for the combination CtrlAltGui and CtrlAltGuiShift plus the letter a.
AutoHotkey inserts the Text right of `Send, ` when this combination is pressed.

View File

@@ -1,4 +1,4 @@
# Userspace: sharing code between keymaps
# Userspace: Sharing Code Between Keymaps
If you use more than one keyboard with a similar keymap, you might see the benefit in being able to share code between them. Create your own folder in `users/` named the same as your keymap (ideally your github username, `<name>`) with the following structure:
@@ -18,7 +18,7 @@ All this only happens when you build a keymap named `<name>`, like this:
make planck:<name>
For example,
For example,
make planck:jack
@@ -32,11 +32,11 @@ Please include authorship (your name, github username, email), and optionally [a
For a brief example, checkout `/users/_example/` , or for a more detailed examples check out [`template.h`](https://github.com/qmk/qmk_firmware/blob/master/users/drashna/template.h) and [`template.c`](https://github.com/qmk/qmk_firmware/blob/master/users/drashna/template.c) in `/users/drashna/` .
### Consolidated Macros
### Consolidated Macros
If you wanted to consoludate macros and other functions into your userspace for all of your keymaps, you can do that. The issue is that you then cannot call any function defined in your userspace, or it gets complicated. To better handle this, you can call the functions here and create new functions to use in individual keymaps.
If you wanted to consolidate macros and other functions into your userspace for all of your keymaps, you can do that. The issue is that you then cannot call any function defined in your userspace, or it gets complicated. To better handle this, you can call the functions here and create new functions to use in individual keymaps.
First, you'd want to go through all of your `keymap.c` files and replace `process_record_user` with `process_record_keymap` instead. This way, you can still use keyboard specific codes on those boards, and use your custom "global" keycodes as well. You'll also want to replace `SAFE_RANGE` with `NEW_SAFE_RANGE` so that you wont have any overlappind keycodes
First, you'd want to go through all of your `keymap.c` files and replace `process_record_user` with `process_record_keymap` instead. This way, you can still use keyboard specific codes on those boards, and use your custom "global" keycodes as well. You'll also want to replace `SAFE_RANGE` with `NEW_SAFE_RANGE` so that you wont have any overlapping keycodes
Then add `#include <name.h>` to all of your keymap.c files. This allows you to use these new keycodes without having to redefine them in each keymap.
@@ -47,7 +47,7 @@ Once you've done that, you'll want to set the keycode definitions that you need
#include "quantum.h"
// Define all of
// Define all of
enum custom_keycodes {
KC_MAKE = SAFE_RANGE,
NEW_SAFE_RANGE //use "NEW_SAFE_RANGE" for keymap specific codes
@@ -90,7 +90,6 @@ bool process_record_user(uint16_t keycode, keyrecord_t *record) {
}
```
This will add a new `KC_MAKE` keycode that can be used in any of your keymaps. And this keycode will output `make <keyboard>:<keymap">`, making frequent compiling easier. And this will work with any keyboard and any keymap as it will output the current boards info, so that you don't have to type this out every time.
This will add a new `KC_MAKE` keycode that can be used in any of your keymaps. And this keycode will output `make <keyboard>:<keymap">`, making frequent compiling easier. And this will work with any keyboard and any keymap as it will output the current boards info, so that you don't have to type this out every time.
Additionally, this should flash the newly compiled firmware automatically, using the correct utility, based on the bootloader settings (or default to just generating the HEX file). However, it should be noted that this may not work on all systems. AVRDUDE doesn't work on WSL, namely (and will dump the HEX in the ".build" folder instead).

View File

@@ -1,6 +1,6 @@
# QMK Features
QMK has a staggering number of features for building your keyboard. It can take some time to understand all of them and determine which one will acheive your goal.
QMK has a staggering number of features for building your keyboard. It can take some time to understand all of them and determine which one will achieve your goal.
* [Advanced Keycodes](feature_advanced_keycodes.md) - Change layers, type shifted keys, and more. Go beyond typing simple characters.
@@ -15,7 +15,7 @@ QMK has a staggering number of features for building your keyboard. It can take
* [Macros](feature_macros.md) - Send multiple key presses when pressing only one physical key.
* [Mouse keys](feature_mouse_keys.md) - Control your mouse pointer from your keyboard.
* [Pointing Device](feature_pointing_device.md) - Framework for connecting your custom pointing device to your keyboard.
* [PS2 Mouse](feature_ps2_mouse.md) - Driver for connecting a ps2 mouse directly to your keyboard.
* [PS2 Mouse](feature_ps2_mouse.md) - Driver for connecting a PS/2 mouse directly to your keyboard.
* [RGB Light](feature_rgblight.md) - RGB lighting for your keyboard.
* [Space Cadet](feature_space_cadet.md) - Use your left/right shift keys to type parenthesis and brackets.
* [Stenography](feature_stenography.md) - Put your keyboard into Plover mode for stenography use.

View File

@@ -1,4 +1,4 @@
# Flashing Intrustructions / Bootloader Information
# Flashing Instructions and Bootloader Information
There are quite a few different types of bootloaders that keyboards use, and just about all of the use a different flashing method. Luckily, projects like the [QMK Toolbox](https://github.com/qmk/qmk_toolbox/releases) aim to be compatible with all the different types without having to think about it much, but this article will describe the different types of bootloaders, and available methods for flashing them.
@@ -8,18 +8,18 @@ If you have a bootloader selected with the `BOOTLOADER` variable in your `rules.
Atmel's DFU bootloader comes on all atmega32u4 chips by default, and is used by many keyboards that have their own ICs on their PCBs (Older OLKB boards, Clueboards). Some keyboards may also use LUFA's DFU bootloader (or QMK's fork) (Newer OLKB boards) that adds in additional features specific to that hardware.
To ensure compatability with the DFU bootloader, make sure this block is present your `rules.mk` (optionally with `lufa-dfu` or `qmk-dfu` instead):
To ensure compatibility with the DFU bootloader, make sure this block is present your `rules.mk` (optionally with `lufa-dfu` or `qmk-dfu` instead):
# Bootloader
# This definition is optional, and if your keyboard supports multiple bootloaders of
# different sizes, comment this out, and the correct address will be loaded
# different sizes, comment this out, and the correct address will be loaded
# automatically (+60). See bootloader.mk for all options.
BOOTLOADER = atmel-dfu
Compatible flashers:
* [QMK Toolbox](https://github.com/qmk/qmk_toolbox/releases) (recommended GUI)
* [dfu-programmer](https://github.com/dfu-programmer/dfu-programmer) / `:dfu` in QMK (recommended commandline)
* [dfu-programmer](https://github.com/dfu-programmer/dfu-programmer) / `:dfu` in QMK (recommended command line)
* [Atmel's Flip](http://www.atmel.com/tools/flip.aspx) (not recommended)
Flashing sequence:
@@ -53,18 +53,18 @@ To generate a production-ready .hex file (containing the application and the boo
Arduino boards and their clones use the [Caterina bootloader](https://github.com/arduino/Arduino/tree/master/hardware/arduino/avr/bootloaders/caterina) (any keyboard built with a Pro Micro, or clone), and uses the avr109 protocol to communicate through virtual serial. Bootloaders like [A-Star](https://www.pololu.com/docs/0J61/9) are based on Caterina.
To ensure compatability with the Caterina bootloader, make sure this block is present your `rules.mk`:
To ensure compatibility with the Caterina bootloader, make sure this block is present your `rules.mk`:
# Bootloader
# This definition is optional, and if your keyboard supports multiple bootloaders of
# different sizes, comment this out, and the correct address will be loaded
# different sizes, comment this out, and the correct address will be loaded
# automatically (+60). See bootloader.mk for all options.
BOOTLOADER = caterina
Compatible flashers:
* [QMK Toolbox](https://github.com/qmk/qmk_toolbox/releases) (recommended GUI)
* [avrdude](http://www.nongnu.org/avrdude/) with avr109 / `:avrdude` (recommended commandline)
* [avrdude](http://www.nongnu.org/avrdude/) with avr109 / `:avrdude` (recommended command line)
* [AVRDUDESS](https://github.com/zkemble/AVRDUDESS)
Flashing sequence:
@@ -82,11 +82,11 @@ or
Halfkay is a super-slim protocol developed by PJRC that uses HID, and come on all Teensys (namely the 2.0).
To ensure compatability with the Halfkay bootloader, make sure this block is present your `rules.mk`:
To ensure compatibility with the Halfkay bootloader, make sure this block is present your `rules.mk`:
# Bootloader
# This definition is optional, and if your keyboard supports multiple bootloaders of
# different sizes, comment this out, and the correct address will be loaded
# different sizes, comment this out, and the correct address will be loaded
# automatically (+60). See bootloader.mk for all options.
BOOTLOADER = halfkay
@@ -94,7 +94,7 @@ Compatible flashers:
* [QMK Toolbox](https://github.com/qmk/qmk_toolbox/releases) (recommended GUI)
* [Teensy Loader](https://www.pjrc.com/teensy/loader.html)
* [Teensy Loader Command Line](https://www.pjrc.com/teensy/loader_cli.html) (recommended commandline)
* [Teensy Loader Command Line](https://www.pjrc.com/teensy/loader_cli.html) (recommended command line)
Flashing sequence:
@@ -102,4 +102,3 @@ Flashing sequence:
2. Wait for the OS to detect the device
4. Flash a .hex file
5. Reset the device into application mode (may be done automatically)

View File

@@ -78,26 +78,26 @@ In addition to the Creators Update, you need Windows 10 Subystem for Linux, so i
### Git
If you already have cloned the repository on your Windows file system you can ignore this section.
You will need to clone the repository to your Windows file system using the normal Git for Windows and **not** the WSL Git. So if you haven't installed Git before, [download](https://git-scm.com/download/win) and install it. Then [set it up](https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup), it's important that you setup the e-mail and user name, especially if you are planning to contribute.
You will need to clone the repository to your Windows file system using the normal Git for Windows and **not** the WSL Git. So if you haven't installed Git before, [download](https://git-scm.com/download/win) and install it. Then [set it up](https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup), it's important that you setup the e-mail and user name, especially if you are planning to contribute.
Once Git is installed, open the Git Bash command and change the directory to where you want to clone QMK; note that you have to use forward slashes, and that your c drive is accessed like this `/c/path/to/where/you/want/to/go`. Then run `git clone --recurse-submodules https://github.com/qmk/qmk_firmware`, this will create a new folder `qmk_firmware` as a subfolder of the current one.
### Toolchain setup
### Toolchain Setup
The Toolchain setup is done through the Windows Subsystem for Linux, and the process is fully automated. If you want to do everything manually, there are no other instructions than the scripts themselves, but you can always open issues and ask for more information.
1. Open "Bash On Ubuntu On Windows" from the start menu.
2. Go to the directory where you cloned `qmk_firmware`. Note that the paths start with `/mnt/` in the WSL, so you have to write for example `cd /mnt/c/path/to/qmk_firmware`.
1. Open "Bash On Ubuntu On Windows" from the start menu.
2. Go to the directory where you cloned `qmk_firmware`. Note that the paths start with `/mnt/` in the WSL, so you have to write for example `cd /mnt/c/path/to/qmk_firmware`.
3. Run `util/wsl_install.sh` and follow the on-screen instructions.
4. Close the Bash command window, and re-open it.
5. You are ready to compile and flash the firmware!
### Some important things to keep in mind
### Some Important Things to Keep in Mind
* You can run `util/wsl_install.sh` again to get all the newest updates.
* Your QMK repository need to be on a Windows file system path, since WSL can't run executables outside it.
* The WSL Git is **not** compatible with the Windows Git, so use the Windows Git Bash or a windows Git GUI for all Git operations
* You can edit files either inside WSL or normally using Windows, but note that if you edit makefiles or shell scripts, make sure you are using an editor that saves the files with Unix line endings. Otherwise the compilation might not work.
## Windows (Vista and later) (Deprecated)
## Windows (Vista and Later) (Deprecated)
These are the old instructions for Windows Vista and later. We recommend you use [MSYS2 as outlined above](#windows-with-msys2-recommended).
@@ -118,7 +118,7 @@ If this is a bit complex for you, Docker might be the turn-key solution you need
```bash
# You'll run this every time you want to build a keymap
# modify the keymap and keyboard assigment to compile what you want
# modify the keymap and keyboard assignment to compile what you want
# defaults are ergodox/default
docker run -e keymap=gwen -e keyboard=ergodox_ez --rm -v $('pwd'):/qmk:rw edasque/qmk_firmware

View File

@@ -1,4 +1,4 @@
# How to use Github with QMK
# How to Use Github with QMK
Github can be a little tricky to those that aren't familiar with it - this guide will walk through each step of forking, cloning, and submitting a pull request with QMK.

View File

@@ -2,11 +2,11 @@
This page attempts to explain the basic information you need to know to work with the QMK project. It assumes that you are familiar with navigating a Unix shell, but does not assume you are familiar with C or with compiling using make.
## Basic QMK structure
## Basic QMK Structure
QMK is a fork of [Jun Wako](https://github.com/tmk)'s [tmk_keyboard](https://github.com/tmk/tmk_keyboard) project. The original TMK code, with modifications, can be found in the `tmk` folder. The QMK additions to the project may be found in the `quantum` folder. Keyboard projects may be found in the `handwired` and `keyboard` folders.
### Keyboard project structure
### Keyboard Project Structure
Within the folder `keyboards` and its subfolder `handwired` is a directory for each keyboard project, for example `qmk_firmware/keyboards/clueboard`. Within it you'll find the following structure:
@@ -14,7 +14,7 @@ Within the folder `keyboards` and its subfolder `handwired` is a directory for e
* `rules.mk`: The file that sets the default "make" options. Do not edit this file directly, instead use a keymap specific `Makefile`
* `config.h`: The file that sets the default compile time options. Do not edit this file directly, instead use a keymap specific `config.h`.
### Keymap structure
### Keymap Structure
In every keymap folder, the following files may be found. Only `keymap.c` is required, and if the rest of the files are not found the default options will be chosen.
@@ -23,7 +23,7 @@ In every keymap folder, the following files may be found. Only `keymap.c` is req
* `rules.mk`: the features of QMK that are enabled
* `readme.md`: a description of your keymap, how others might use it, and explanations of features. Please upload images to a service like imgur.
# The `config.h` file
# The `config.h` File
There are 2 `config.h` locations:

View File

@@ -1,10 +1,10 @@
# More detailed make instruction
# More Detailed `make` Instructions
The full syntax of the `make` command is `<keyboard_folder>:<keymap>:<target>`, where:
* `<keyboard_folder>` is the path of the keyboard, for example `planck`
* Use `all` to compile all keyboards
* Specify the path to compile a revision, for example `planck/rev4` or `planck/rev3`
* Specify the path to compile a revision, for example `planck/rev4` or `planck/rev3`
* If the keyboard doesn't have any folders, it can be left out
* To compile the default folder, you can leave it out
* `<keymap>` is the name of the keymap, for example `algernon`
@@ -14,7 +14,7 @@ The full syntax of the `make` command is `<keyboard_folder>:<keymap>:<target>`,
The `<target>` means the following
* If no target is given, then it's the same as `all` below
* `all` compiles as many keyboard/revision/keymap combinations as specified. For example, `make planck/rev4:default` will generate a single .hex, while `make planck/rev4:all` will generate a hex for every keymap available to the planck.
* `dfu`, `teensy` or `dfu-util`, compile and upload the firmware to the keyboard. If the compilation fails, then nothing will be uploaded. The programmer to use depends on the keyboard. For most keyboards it's `dfu`, but for ChibiOS keyboards you should use `dfu-util`, and `teensy` for standard Teensys. To find out which command you should use for your keyboard, check the keyboard specific readme.
* `dfu`, `teensy` or `dfu-util`, compile and upload the firmware to the keyboard. If the compilation fails, then nothing will be uploaded. The programmer to use depends on the keyboard. For most keyboards it's `dfu`, but for ChibiOS keyboards you should use `dfu-util`, and `teensy` for standard Teensys. To find out which command you should use for your keyboard, check the keyboard specific readme.
* **Note**: some operating systems need root access for these commands to work, so in that case you need to run for example `sudo make planck/rev4:default:dfu`.
* `clean`, cleans the build output folders to make sure that everything is built from scratch. Run this before normal compilation if you have some unexplainable problems.
@@ -30,10 +30,10 @@ The make command itself also has some additional options, type `make --help` for
Here are some examples commands
* `make all:all` builds everything (all keyboard folders, all keymaps). Running just `make` from the `root` will also run this.
* `make ergodox_infinity:algernon:clean` will clean the build output of the Ergodox Infinity keyboard.
* `make ergodox_infinity:algernon:clean` will clean the build output of the Ergodox Infinity keyboard.
* `make planck/rev4:default:dfu COLOR=false` builds and uploads the keymap without color output.
## `rules.mk` options
## `rules.mk` Options
Set these variables to `no` to disable them, and `yes` to enable them.
@@ -53,9 +53,9 @@ This allows you to use the system and audio control key codes.
`CONSOLE_ENABLE`
This allows you to print messages that can be read using [`hid_listen`](https://www.pjrc.com/teensy/hid_listen.html).
This allows you to print messages that can be read using [`hid_listen`](https://www.pjrc.com/teensy/hid_listen.html).
By default, all debug (*dprint*) print (*print*, *xprintf*), and user print (*uprint*) messages will be enabled. This will eat up a significant portion of the flash and may make the keyboard .hex file too big to program.
By default, all debug (*dprint*) print (*print*, *xprintf*), and user print (*uprint*) messages will be enabled. This will eat up a significant portion of the flash and may make the keyboard .hex file too big to program.
To disable debug messages (*dprint*) and reduce the .hex file size, include `#define NO_DEBUG` in your `config.h` file.
@@ -65,7 +65,7 @@ To disable print messages (*print*, *xprintf*) and **KEEP** user print messages
To see the text, open `hid_listen` and enjoy looking at your printed messages.
**NOTE:** Do not include *uprint* messages in anything other than your keymap code. It must not be used within the QMK system framework. Otherwise, you will bloat other people's .hex files.
**NOTE:** Do not include *uprint* messages in anything other than your keymap code. It must not be used within the QMK system framework. Otherwise, you will bloat other people's .hex files.
Consumes about 400 bytes.
@@ -133,7 +133,7 @@ This consumes about 5390 bytes.
This enables [key lock](feature_key_lock.md). This consumes an additional 260 bytes.
## Customizing Makefile options on a per-keymap basis
## Customizing Makefile Options on a Per-Keymap Basis
If your keymap directory has a file called `rules.mk` any options you set in that file will take precedence over other `rules.mk` options for your particular keyboard.

View File

@@ -10,11 +10,11 @@ Using the `/Vagrantfile` in this repository requires you have [Vagrant](http://w
Other than having Vagrant and Virtualbox installed and possibly a restart of your computer afterwards, you can simple run a 'vagrant up' anywhere inside the folder where you checked out this project and it will start a Linux virtual machine that contains all the tools required to build this project. There is a post Vagrant startup hint that will get you off on the right foot, otherwise you can also reference the build documentation below.
# Flashing the firmware
# Flashing the Firmware
The "easy" way to flash the firmware is using a tool from your host OS:
* [QMK Toolbox](https://github.com/qmk/qmk_toolbox) (reccommened)
* [QMK Toolbox](https://github.com/qmk/qmk_toolbox) (recommended)
* [Teensy Loader](https://www.pjrc.com/teensy/loader.html)
* [Atmel FLIP](http://www.atmel.com/tools/flip.aspx)

View File

@@ -1,4 +1,4 @@
# Glossary of QMK terms
# Glossary of QMK Terms
## ARM
A line of 32-bit MCU's produced by a number of companies, such as Atmel, Cypress, Kinetis, NXP, ST, and TI.
@@ -50,7 +50,7 @@ The software that controls your MCU.
Software provided by Atmel for flashing AVR devices. We generally recommend [QMK Flasher](https://github.com/qmk/qmk_flasher) instead, but for some advanced use cases FLIP is required.
## git
Versioning software used at the commandline
Versioning software used at the command line
## GitHub
The website that hosts most of the QMK project. It provides integration with git, issue tracking, and other features that help us run QMK.
@@ -91,7 +91,7 @@ Software package that is used to compile all the source files. You run `make` wi
A wiring pattern of columns and rows that enables the MCU to detect keypresses with a fewer number of pins. The matrix often incorporates diodes to allow for NKRO.
## Macro
A feature that lets you send muiltple keypress events (hid reports) after having pressed only a single key.
A feature that lets you send multiple keypress events (hid reports) after having pressed only a single key.
* [Macro Documentation](feature_macros.md)
@@ -139,12 +139,12 @@ A special set of shift keys which allow you to type various types of braces by t
Pressing and releasing a key. In some situations you will need to distinguish between a key down and a key up event, and Tap always refers to both at once.
## Tap Dance
A feature that lets you assign muiltple keycodes to the same key based on how many times you press it.
A feature that lets you assign multiple keycodes to the same key based on how many times you press it.
* [Tap Dance Documentation](feature_tap_dance.md)
## Teensy
A low-cost AVR development board that is commonly used for hand-wired builds. A teensy is often chosen despite costing a few dollors more due to its halfkay bootloader, which makes flashing very simple.
A low-cost AVR development board that is commonly used for hand-wired builds. A teensy is often chosen despite costing a few dollars more due to its halfkay bootloader, which makes flashing very simple.
## Underlight
A generic term for LEDs that light the underside of the board. These LED's typically shine away from the bottom of the PCB and towards the surface the keyboard rests on.
@@ -165,6 +165,6 @@ Universal Serial Bus, the most common wired interface for a keyboard.
## USB Host (or simply Host)
The USB Host is your computer, or whatever device your keyboard is plugged into.
# Couldn't find the term you're looking for?
# Couldn't Find the Term You're Looking For?
[Open an issue](https://github.com/qmk/qmk_firmware/issues) with your question and the term in question could be added here. Better still, open a pull request with the definition. :)
[Open an issue](https://github.com/qmk/qmk_firmware/issues) with your question and the term in question could be added here. Better still, open a pull request with the definition. :)

View File

@@ -1,4 +1,4 @@
# Quantum Hand-wiring Guide
# Quantum Hand-Wiring Guide
Parts list:
* *x* keyswitches (MX, Matias, Gateron, etc)
@@ -11,7 +11,7 @@ Parts list:
* Tweezers (optional)
* Wire cutters/snippers
## How the matrix works (why we need diodes)
## How the Matrix Works (Why We Need Diodes)
The microcontroller (in this case, the Teensy 2.0) will be setup up via the firmware to send a logical 1 to the columns, one at a time, and read from the rows, all at once - this process is called matrix scanning. The matrix is a bunch of open switches that, by default, don't allow any current to pass through - the firmware will read this as no keys being pressed. As soon as you press one key down, the logical 1 that was coming from the column the keyswitch is attached to gets passed through the switch and to the corresponding row - check out the following 2x2 example:
@@ -100,9 +100,9 @@ Things act as they should! Which will get us the following data:
The firmware can then use this correct data to detect what it should do, and eventually, what signals it needs to send to the OS.
# The actual hand-wiring
# The Actual Hand-Wiring
## Getting things in place
## Getting Things in Place
When starting this, you should have all of your stabilisers and keyswitches already installed (and optionally keycaps). If you're using a Cherry-type stabiliser (plate-mounted only, obviously), you'll need to install that before your keyswitches. If you're using Costar ones, you can installed them afterwards.
@@ -112,7 +112,7 @@ Get your soldering iron heated-up and collect the rest of the materials from the
Before continuing, plan out where you're going to place your Teensy. If you're working with a board that has a large (6.25u) spacebar, it may be a good idea to place it in-between switches against the plate. Otherwise, you may want to trim some of the leads on the keyswitches where you plan on putting it - this will make it a little harder to solder the wire/diodes, but give you more room to place the Teensy.
## Preparing the diodes
## Preparing the Diodes
It's a little easier to solder the diodes in place if you bend them at a 90º angle immediately after the black line - this will help to make sure you put them on the right way (direction matters), and in the correct position. The diodes will look like this when bent (with longer leads):
@@ -125,7 +125,7 @@ It's a little easier to solder the diodes in place if you bend them at a 90º an
We'll be using the long lead at the bent end to connect it to the elbow (bent part) of the next diode, creating the row.
## Soldering the diodes
## Soldering the Diodes
Starting at the top-left switch, place the diode (with tweezers if you have them) on the switch so that the diode itself is vertically aligned, and the black line is facing toward you. The straight end of the diode should be touching the left contact on the switch, and the bent end should be facing to the right and resting on the switch there, like this:
@@ -133,7 +133,7 @@ Starting at the top-left switch, place the diode (with tweezers if you have them
│o
┌┴┐ o
│ │ O
├─┤
├─┤
└┬┘
└─────────────
```
@@ -142,7 +142,7 @@ Letting the diode rest, grab your solder, and touch both it and the soldering ir
The smoke that the rosin releases is harmful, so be careful not to breath it or get it in your eyes/face.
After soldering things in place, it may be helpful to blow on the joint to push the smoke away from your face, and cool the solder quicker. You should see the solder develop a matte (not shiney) surface as it solidifies. Keep in mind that it will still be very hot afterwards, and will take a couple minutes to be cool to touch. Blow on it will accelerate this process.
After soldering things in place, it may be helpful to blow on the joint to push the smoke away from your face, and cool the solder quicker. You should see the solder develop a matte (not shiny) surface as it solidifies. Keep in mind that it will still be very hot afterwards, and will take a couple minutes to be cool to touch. Blow on it will accelerate this process.
When the first diode is complete, the next one will need to be soldered to both the keyswitch, and the previous diode at the new elbow. That will look something like this:
@@ -150,7 +150,7 @@ When the first diode is complete, the next one will need to be soldered to both
│o │o
┌┴┐ o ┌┴┐ o
│ │ O │ │ O
├─┤ ├─┤
├─┤ ├─┤
└┬┘ └┬┘
└────────────────┴─────────────
```
@@ -159,7 +159,7 @@ After completing a row, use the wire cutters to trim the excess wire from the to
When all of the diodes are completely soldered, it's a good idea to quickly inspect each one to ensure that your solder joints are solid and sturdy - repairing things after this is possible, but more difficult.
## Soldering the columns
## Soldering the Columns
You'll have some options in the next process - it's a good idea to insulate the column wires (since the diodes aren't), but if you're careful enough, you can use exposed wires for the columns - it's not recommended, though. If you're using single-cored wire, stripping the plastic off of the whole wire and feeding it back on is probably the best option, but can be difficult depending on the size and materials. You'll want to leave parts of the wire exposed where you're going to be solder it onto the keyswitch.
@@ -169,7 +169,7 @@ Before beginning to solder, it helps to have your wire pre-bent (if using single
If you're not using any insulation, you can try to keep the column wires elevated, and solder them near the tips of the keyswitch contacts - if the wires are sturdy enough, they won't short out to the row wiring an diodes.
## Wiring things to the Teensy
## Wiring Things to the Teensy
Now that the matrix itself is complete, it's time to connect what you've done to the Teensy. You'll be needing the number of pins equal to your number of columns + your number of rows. There are some pins on the Teensy that are special, like D6 (the LED on the chip), or some of the UART, SPI, I2C, or PWM channels, but only avoid those if you're planning something in addition to a keyboard. If you're unsure about wanting to add something later, you should have enough pins in total to avoid a couple.
@@ -185,7 +185,7 @@ When you're done with the columns, start with the rows in the same process, from
As you move along, be sure that the Teensy is staying in place - recutting and soldering the wires is a pain!
# Getting some basic firmware set-up
# Getting Some Basic Firmware Set Up
From here, you should have a working keyboard once you program a firmware. Before we attach the Teensy permanently to the keyboard, let's quickly get some firmware loaded onto the Teensy so we can test each keyswitch.
@@ -201,13 +201,13 @@ You'll want to navigate to the `keyboards/<project_name>/` folder by typing, lik
cd keyboards/<project_name>
### config.h
### `config.h`
The first thing you're going to want to modify is the `config.h` file. Find `MATRIX_ROWS` and `MATRIX_COLS` and change their definitions to match the dimensions of your keyboard's matrix.
Farther down are `MATRIX_ROW_PINS` and `MATRIX_COL_PINS`. Change their definitions to match how you wired up your matrix (looking from the top of the keyboard, the rows run top-to-bottom and the columns run left-to-right). Likewise, change the definition of `UNUSED_PINS` to match the pins you did not use (this will save power).
### \<project_name\>.h
### `<project_name>.h`
The next file you'll want to look at is `<project_name>.h`. You're going to want to rewrite the `KEYMAP` definition - the format and syntax here is extremely important, so pay attention to how things are setup. The first half of the definition are considered the arguments - this is the format that you'll be following in your keymap later on, so you'll want to have as many k*xy* variables here as you do keys. The second half is the part that the firmware actually looks at, and will contain gaps depending on how you wired your matrix.
@@ -271,7 +271,7 @@ This would require our `KEYMAP` definition to look like this:
Notice how the `k11` and `KC_NO` switched places to represent the wiring, and the unused final column on the bottom row. Sometimes it'll make more sense to put a keyswitch on a particular column, but in the end, it won't matter, as long as all of them are accounted for. You can use this process to write out the `KEYMAP` for your entire keyboard - be sure to remember that your keyboard is actually backwards when looking at the underside of it.
### keymaps/<variant>/default.c
### `keymaps/<variant>/default.c`
This is the actual keymap for your keyboard, and the main place you'll make changes as you perfect your layout. `default.c` is the file that gets pull by default when typing `make`, but you can make other files as well, and specify them by typing `make handwired/<keyboard>:<variant>`, which will pull `keymaps/<variant>/keymap.c`.
@@ -302,7 +302,7 @@ Note that the layout of the keycodes is similar to the physical layout of our ke
It's also important to use the `KEYMAP` function we defined earlier - this is what allows the firmware to associate our intended readable keymap with the actual wiring.
## Compiling your firmware
## Compiling Your Firmware
After you've written out your entire keymap, you're ready to get the firmware compiled and onto your Teensy. Before compiling, you'll need to get your [development environment set-up](getting_started_build_tools.md) - you can skip the dfu-programmer instructions, but you'll need to download and install the [Teensy Loader](https://www.pjrc.com/teensy/loader.html) to get the firmware on your Teensy.
@@ -310,7 +310,7 @@ Once everything is installed, running `make` in the terminal should get you some
Once you have your `<project_name>.hex` file, open up the Teensy loader application, and click the file icon. From here, navigate to your `QMK/keyboards/<project_name>/` folder, and select the `<project_name>.hex` file. Plug in your keyboard and press the button on the Teensy - you should see the LED on the device turn off once you do. The Teensy Loader app will change a little, and the buttons should be clickable - click the download button (down arrow), and then the reset button (right arrow), and your keyboard should be ready to go!
## Testing your firmware
## Testing Your Firmware
Carefully flip your keyboard over, open up a new text document, and try typing - you should get the characters that you put into your keymap. Test each key, and note the ones that aren't working. Here's a quick trouble-shooting guide for non-working keys:
@@ -324,7 +324,7 @@ Carefully flip your keyboard over, open up a new text document, and try typing -
If you've done all of these things, keep in mind that sometimes you might have had multiple things affecting the keyswitch, so it doesn't hurt to test the keyswitch by shorting it out at the end.
# Securing the Teensy, finishing your hardware, getting fancier firmware
# Securing the Teensy, Finishing Your Hardware, Getting Fancier Firmware
Now that you have a working board, it's time to get things in their permanent positions. I've often used liberal amounts of hot glue to secure and insulate things, so if that's your style, start spreading that stuff like butter. Otherwise, double-sided tape is always an elegant solution, and electrical tape is a distant second. Due to the nature of these builds, a lot of this part is up to you and how you planned (or didn't plan) things out.

View File

@@ -1,6 +1,6 @@
# Hardware
QMK runs on a variety of hardware. If your processor can be targetted by [LUFA](http://www.fourwalledcubicle.com/LUFA.php) or [ChibiOS](http://www.chibios.com) you can probably get QMK running on it. This section explores getting QMK running on, and communicating with, hardware of all kinds.
QMK runs on a variety of hardware. If your processor can be targeted by [LUFA](http://www.fourwalledcubicle.com/LUFA.php) or [ChibiOS](http://www.chibios.com) you can probably get QMK running on it. This section explores getting QMK running on, and communicating with, hardware of all kinds.
* [Keyboard Guidelines](hardware_keyboard_guidelines.md)
* [AVR Processors](hardware_avr.md)

View File

@@ -1,4 +1,4 @@
# Keyboards With AVR Processors
# Keyboards with AVR Processors
This page describes the support for for AVR processors in QMK. AVR processors include the atmega32u4, atmega32u2, at90usb1286, and other processors from Atmel Corporation. AVR processors are 8-bit MCU's that are designed to be easy to work with. The most common AVR processors in keyboards have on-board USB and plenty of GPIO for supporting large keyboard matrices. They are the most popular MCU for use in keyboards today.
@@ -28,7 +28,7 @@ This is where all the custom logic for your keyboard goes. Many keyboards do not
## `<keyboard>.h`
This is the file you define your [Layout Macro(s)](feature_layouts.md) in. At minumum you should have a `#define LAYOUT` for your keyboard that looks something like this:
This is the file you define your [Layout Macro(s)](feature_layouts.md) in. At minimum you should have a `#define LAYOUT` for your keyboard that looks something like this:
```
#define LAYOUT( \
@@ -44,7 +44,7 @@ The first half of the `LAYOUT` pre-processor macro defines the physical arrangem
Each of the `k__` variables needs to be unique, and typically they follow the format `k<row><col>`.
The physical matrix (the second half) must have a number of rows equalling `MATRIX_ROWS`, and each row must have exactly `MATRIX_COLS` elements in it. If you do not have this many physical keys you can use `KC_NO` to fill in the blank spots.
The physical matrix (the second half) must have a number of rows equaling `MATRIX_ROWS`, and each row must have exactly `MATRIX_COLS` elements in it. If you do not have this many physical keys you can use `KC_NO` to fill in the blank spots.
## `config.h`
@@ -154,4 +154,3 @@ OPT_DEFS += -DBOOTLOADER_SIZE=4096
### Build Options
There are a number of features that can be turned on or off in `rules.mk`. See the [Config Options](config_options.md#feature-options) page for a detailed list and description.

View File

@@ -10,11 +10,11 @@ QMK is used on a lot of different hardware. While support for the most common MC
# Available Drivers
## ProMicro (AVR only)
## ProMicro (AVR Only)
Support for addressing pins on the ProMicro by their Arduino name rather than their AVR name. This needs to be better documented, if you are trying to do this and reading the code doesn't help please [open an issue](https://github.com/qmk/qmk_firmware/issues/new) and we can help you through the process.
## SSD1306 (AVR only)
## SSD1306 (AVR Only)
Support for SSD1306 based OLED displays. This needs to be better documented, if you are trying to do this and reading the code doesn't help please [open an issue](https://github.com/qmk/qmk_firmware/issues/new) and we can help you through the process.
@@ -22,6 +22,6 @@ Support for SSD1306 based OLED displays. This needs to be better documented, if
You can make use of uGFX within QMK to drive character and graphic LCD's, LED arrays, OLED, TFT, and other display technologies. This needs to be better documented, if you are trying to do this and reading the code doesn't help please [open an issue](https://github.com/qmk/qmk_firmware/issues/new) and we can help you through the process.
## WS2812 (AVR only)
## WS2812 (AVR Only)
Support for WS2811/WS2812{a,b,c} LED's. For more information see the [RGB Light](feature_rgblight.md) page.

View File

@@ -2,7 +2,7 @@
We welcome all keyboard projects into QMK, but ask that you try to stick to a couple guidelines that help us keep things organised and consistent.
## Naming your keyboard/project
## Naming Your Keyboard/Project
All names should be lowercase alphanumeric, and separated by an underscore (`_`), but not begin with one. Your directory and your `.h` and `.c` files should have exactly the same name. All folders should follow the same format.
@@ -10,7 +10,7 @@ All names should be lowercase alphanumeric, and separated by an underscore (`_`)
All projects need to have a `readme.md` file that explains what the keyboard is, who made it, where it is available, and links to more information. Please follow the [published template](documentation_templates.md#keyboard-readmemd-template).
## Image/Hardware files
## Image/Hardware Files
In an effort to keep the repo size down, we're no longer accepting images of any format in the repo, with few exceptions. Hosting them elsewhere (imgur) and linking them in the `readme.md` is the preferred method.
@@ -91,11 +91,11 @@ All key positions and rotations are specified in relation to the top-left corner
* `RY`
* The absolute position of the point to rotate the key around in the vertical axis. Default: `y`
* `KS`
* Key Shape: define a polygon by providing a list of points, in Key Units.
* Key Shape: define a polygon by providing a list of points, in Key Units.
* **Important**: These are relative to the top-left of the key, not absolute.
* Example ISO Enter: `[ [0,0], [1.5,0], [1.5,2], [0.25,2], [0.25,1], [0,1], [0,0] ]`
### How Is The Metadata Exposed?
### How is the Metadata Exposed?
This metadata is primarily used in two ways:
@@ -104,11 +104,11 @@ This metadata is primarily used in two ways:
Configurator authors can see the [QMK Compiler](https://docs.compile.qmk.fm/api_docs.html) docs for more information on using the JSON API.
## Non-production/handwired projects
## Non-Production/Handwired Projects
We're happy to accept any project that uses QMK, including prototypes and handwired ones, but we have a separate `/keyboards/handwired/` folder for them, so the main `/keyboards/` folder doesn't get overcrowded. If a prototype project becomes a production project at some point in the future, we'd be happy to move it to the main `/keyboards/` folder!
## Warnings as errors
## Warnings as Errors
When developing your keyboard, keep in mind that all warnings will be treated as errors - these small warnings can build-up and cause larger errors down the road (and keeping them is generally a bad practice).
@@ -132,6 +132,6 @@ The core of QMK is licensed under the [GNU General Public License](https://www.g
If your keyboard makes use of the [uGFX](https://ugfx.io) features within QMK you must comply with the [uGFX License](https://ugfx.io/license.html), which requires a separate commercial license before selling a device containing uGFX.
## Technical details
## Technical Details
If you're looking for more information on making your keyboard work with QMK, [check out the hardware section](hardware.md)!

View File

@@ -1,10 +1,10 @@
# How keys are registered, and interpreted by computers
# How Keys Are Registered, and Interpreted by Computers
In this file, you can will learn the concepts of how keyboards work over USB,
and you'll be able to better understand what you can expect from changing your
firmware directly.
## Schematic view
## Schematic View
Whenever you type on 1 particular key, here is the chain of actions taking
place:
@@ -49,7 +49,7 @@ layout is set to QWERTY, a sample of the matching table is as follow:
| 0x1D | z/Z |
| ... | ... |
## Back to the firmware
## Back to the Firmware
As the layout is generally fixed (unless you create your own), the firmware can actually call a keycode by its layout name directly to ease things for you. This is exactly what is done here with `KC_A` actually representing `0x04` in QWERTY. The full list can be found in [keycodes](keycodes.md).

View File

@@ -17,11 +17,11 @@ If you're having trouble flashing/erasing your board, and running into cryptic e
atmel.c:1434: Error flashing the block: err -2.
ERROR
Memory write error, use debug for more info.
commands.c:360: Error writing memory data. (err -4)
commands.c:360: Error writing memory data. (err -4)
You're likely going to need to ISP flash your board/device to get it working again. Luckily, this process is pretty straight-forward, provided you have any extra programmable keyboard, Arduino, or Teensy 2.0/Teensy 2.0++. There are also dedicated ISP flashers available for this, but most cost >$15, and it's assumed that if you are googling this error, this is the first you've heard about ISP flashing, and don't have one readily available (whereas you might have some other AVR board). __We'll be using a Teensy 2.0 with Windows 10 in this guide__ - if you are comfortable doing this on another system, please consider editing this guide and contributing those instructions!
## Software needed
## Software Needed
* [The Arduino IDE](https://www.arduino.cc/en/Main/Software)
* [Teensyduino](https://www.pjrc.com/teensy/td_download.html) (if you're using a Teensy)
@@ -37,8 +37,8 @@ This is pretty straight-forward - we'll be connecting like-things to like-things
Flasher B3 <-> Keyboard B3 (MISO)
Flasher VCC <-> Keyboard VCC
Flasher GND <-> Keyboard GND
## The ISP firmware
## The ISP Firmware
Make sure your keyboard is unplugged from any device, and plug in your Teensy.
@@ -51,31 +51,31 @@ Then scroll down until you see something that looks like this block of code:
// Configure which pins to use:
// The standard pin configuration.
#ifndef ARDUINO_HOODLOADER2
#ifndef ARDUINO_HOODLOADER2
#define RESET 0 // Use 0 (B0) instead of 10
#define LED_HB 11 // Use 11 (LED on the Teensy 2.0)
#define LED_ERR 8 // This won't be used unless you have an LED hooked-up to 8 (D3)
#define LED_PMODE 7 // This won't be used unless you have an LED hooked-up to 7 (D2)
And make the changes in the last four lines. If you're using something besides the Teenys 2.0, you'll want to choose something else that makes sense for `LED_HB`. We define `RESET` as `0`/`B0` because that's what's close - if you want to use another pin for some reason, [you can use the pinouts to choose something else](https://www.pjrc.com/teensy/pinout.html).
Once you've made your changes, you can click the Upload button (right arrow), which will open up the Teensy flasher app - you'll need to press the reset button on the Teensy the first time, but after that, it's automatic (you shouldn't be flashing this more than once, though). Once flashed, the orange LED on the Teensy will flash on and off, indicating it's ready for some action.
And make the changes in the last four lines. If you're using something besides the Teensy 2.0, you'll want to choose something else that makes sense for `LED_HB`. We define `RESET` as `0`/`B0` because that's what's close - if you want to use another pin for some reason, [you can use the pinouts to choose something else](https://www.pjrc.com/teensy/pinout.html).
## The .hex file
Once you've made your changes, you can click the Upload button (right arrow), which will open up the Teensy flasher app - you'll need to press the reset button on the Teensy the first time, but after that, it's automatic (you shouldn't be flashing this more than once, though). Once flashed, the orange LED on the Teensy will flash on and off, indicating it's ready for some action.
Before flashing your firmware, you're going to need to and do a little preparation. We'll be appending [this bootloader (also a .hex file)](https://github.com/qmk/qmk_firmware/blob/master/util/bootloader_atmega32u4_1_0_0.hex) to the end of our firmware by opening the original .hex file in a text editor, and removing the last line, which should be `:00000001FF` (this is an EOF message). After that's been removed, copy the entire bootloader's contents and paste it at the end of the original file, and save it.
## The `.hex` File
Before flashing your firmware, you're going to need to and do a little preparation. We'll be appending [this bootloader (also a .hex file)](https://github.com/qmk/qmk_firmware/blob/master/util/bootloader_atmega32u4_1_0_0.hex) to the end of our firmware by opening the original .hex file in a text editor, and removing the last line, which should be `:00000001FF` (this is an EOF message). After that's been removed, copy the entire bootloader's contents and paste it at the end of the original file, and save it.
It's possible to use other bootloaders here in the same way, but __you need a bootloader__, otherwise you'll have to ISP to write new firmware to your keyboard.
## Flashing your firmware
## Flashing Your Firmware
Make sure your keyboard is unplugged from any device, and plug in your Teensy.
Open `cmd` and navigate to your where your modified .hex file is. We'll pretend this file is called `main.hex`, and that your Teensy 2.0 is on the `COM3` port - if you're unsure, you can open your Device Manager, and look for `Ports > USB Serial Device`. Use that COM port here. You can confirm it's the right port with:
avrdude -c avrisp -P COM3 -p atmega32u4
and you should get something like the following output:
avrdude: AVR device initialized and ready to accept instructions
@@ -90,8 +90,8 @@ and you should get something like the following output:
Since our keyboard uses an `atmega32u4` (common), that is the chip we'll specify. This is the full command:
avrdude -c avrisp -P COM3 -p atmega32u4 -U flash:w:main.hex:i
avrdude -c avrisp -P COM3 -p atmega32u4 -U flash:w:main.hex:i
You should see a couple of progress bars, then you should see:
avrdude: verifying ...
@@ -100,7 +100,7 @@ You should see a couple of progress bars, then you should see:
avrdude: safemode: Fuses OK
avrdude done. Thank you.
Which means everything should be ok! Your board may restart automatically, otherwise, unplug your Teensy and plug in your keyboard - you can leave your Teensy wired to your keyboard while testing things, but it's recommended that you desolder it/remove the wiring once you're sure everything works.
If you have any questions/problems, feel free to [open an issue](https://github.com/qmk/qmk_firmware/issues/new)!

View File

@@ -183,7 +183,7 @@ KC_RSHIFT KC_RSFT E5 Keyboard RightShift
KC_RALT E6 Keyboard RightAlt
KC_RGUI E7 Keyboard Right GUI(Windows/Apple/Meta key)
/*
/*
* Virtual keycodes
*/
/* System Control */

View File

@@ -1,315 +1,392 @@
# Overview
# Keycodes Overview
When defining a [keymap](keymap.md) each key needs a valid key definition. This page documents the symbols that correspond to keycodes that are available to you in QMK. This is a reference only. Where possible keys link to the page documenting their functionality.
When defining a [keymap](keymap.md) each key needs a valid key definition. This page documents the symbols that correspond to keycodes that are available to you in QMK.
## Keycode Index
This is a reference only. Each group of keys links to the page documenting their functionality in more detail.
|Long Name|Short Name|Description|
|---------|----------|-----------|
|`KC_1`||||
|`KC_2`||||
|`KC_3`||||
|`KC_4`||||
|`KC_5`||||
|`KC_6`||||
|`KC_7`||||
|`KC_8`||||
|`KC_9`||||
|`KC_0`||||
|`KC_F1`||||
|`KC_F2`||||
|`KC_F3`||||
|`KC_F4`||||
|`KC_F5`||||
|`KC_F6`||||
|`KC_F7`||||
|`KC_F8`||||
|`KC_F9`||||
|`KC_F10`||||
|`KC_F11`||||
|`KC_F12`||||
|`KC_F13`||||
|`KC_F14`||||
|`KC_F15`||||
|`KC_F16`||||
|`KC_F17`||||
|`KC_F18`||||
|`KC_F19`||||
|`KC_F20`||||
|`KC_F21`||||
|`KC_F22`||||
|`KC_F23`||||
|`KC_F24`||||
|`KC_A`||||
|`KC_B`||||
|`KC_C`||||
|`KC_D`||||
|`KC_E`||||
|`KC_F`||||
|`KC_G`||||
|`KC_H`||||
|`KC_I`||||
|`KC_J`||||
|`KC_K`||||
|`KC_L`||||
|`KC_M`||||
|`KC_N`||||
|`KC_O`||||
|`KC_P`||||
|`KC_Q`||||
|`KC_R`||||
|`KC_S`||||
|`KC_T`||||
|`KC_U`||||
|`KC_V`||||
|`KC_W`||||
|`KC_X`||||
|`KC_Y`||||
|`KC_Z`||||
|`KC_ENTER`|`KC_ENT`|`Return (ENTER)`|
|`KC_ESCAPE`|`KC_ESC`|`ESCAPE`|
|`KC_BSPACE`|`KC_BSPC`|`DELETE (Backspace)`|
|`KC_TAB`||`Tab`|
|`KC_SPACE`|`KC_SPC`|Spacebar|
|`KC_MINUS`|`KC_MINS`|`-` and `_`|
|`KC_EQUAL`|`KC_EQL`|`=` and `+`|
|`KC_LBRACKET`|`KC_LBRC`|`[` and `{`|
|`KC_RBRACKET`|`KC_RBRC`|`]` and `}`|
|`KC_BSLASH`|`KC_BSLS`|`\` and <code>&#124;</code> |
|`KC_NONUS_HASH`|`KC_NUHS`|Non-US `#` and `~`|
|`KC_NONUS_BSLASH`|`KC_NUBS`|Non-US `\` and <code>&#124;</code> |
|`KC_INT1`|`KC_RO`|JIS `\` and <code>&#124;</code> |
|`KC_INT2`|`KC_KANA`|International216|
|`KC_INT3`|`KC_JYEN`|Yen Symbol (`¥`)|
|`KC_SCOLON`|`KC_SCLN`|`;` and `:`|
|`KC_QUOTE`|`KC_QUOT`|`` and `“`|
|`KC_GRAVE`|`KC_GRV`|Grave Accent and Tilde|
|`KC_COMMA`|`KC_COMM`|`,` and `<`|
|`KC_DOT`||`.` and `>`|
|`KC_SLASH`|`KC_SLSH`|`/` and `?`|
|`KC_CAPSLOCK`|`KC_CAPS`|Caps Lock|
|`KC_LCTRL`|`KC_LCTL`|LeftControl|
|`KC_LSHIFT`|`KC_LSFT`|LeftShift|
|`KC_LALT`||LeftAlt|
|`KC_LGUI`||Left GUI(Windows/Apple/Meta key)|
|`KC_RCTRL`|`KC_RCTL`|RightControl|
|`KC_RSHIFT`|`KC_RSFT`|RightShift|
|`KC_RALT`||RightAlt|
|`KC_RGUI`||Right GUI(Windows/Apple/Meta key)|
|`KC_LOCKING_CAPS`|`KC_LCAP`|Locking Caps Lock|
|`KC_LOCKING_NUM`|`KC_LNUM`|Locking Num Lock|
|`KC_LOCKING_SCROLL`|`KC_LSCR`|Locking Scroll Lock|
|`KC_INT4`|`KC_HENK`|JIS Henken|
|`KC_INT5`|`KC_MHEN`|JIS Muhenken|
|`KC_PSCREEN`|`KC_PSCR`|PrintScreen|
|`KC_SCROLLLOCK`|`KC_SLCK`|Scroll Lock|
|`KC_PAUSE`|`KC_PAUS`|Pause|
|`KC_INSERT`|`KC_INS`|Insert|
|`KC_HOME`||Home|
|`KC_PGUP`||PageUp|
|`KC_DELETE`|`KC_DEL`|Delete Forward|
|`KC_END`||End|
|`KC_PGDOWN`|`KC_PGDN`|PageDown|
|`KC_RIGHT`|`KC_RGHT`|RightArrow|
|`KC_LEFT`||LeftArrow|
|`KC_DOWN`||DownArrow|
|`KC_UP`||UpArrow|
|`KC_APPLICATION`|`KC_APP`|Application|
|`KC_POWER`||Old power button scancode. MS has deprecated this in favor of `KC_SYSTEM_POWER`.|
|`KC_EXECUTE`||Execute|
|`KC_HELP`||Help|
|`KC_MENU`||Menu|
|`KC_SELECT`||Select|
|`KC_AGAIN`||Again|
|`KC_UNDO`||Undo|
|`KC_CUT`||Cut|
|`KC_COPY`||Copy|
|`KC_PASTE`||Paste|
|`KC_FIND`||Find|
|`KC_ALT_ERASE`||Alternate Erase|
|`KC_SYSREQ`||SysReq/Attention|
|`KC_CANCEL`||Cancel|
|`KC_CLEAR`||Clear|
|`KC_PRIOR`||Prior|
|`KC_RETURN`||Return|
|`KC_SEPARATOR`||Separator|
|`KC_OUT`||Out|
|`KC_OPER`||Oper|
|`KC_CLEAR_AGAIN`||Clear/Again|
|`KC_CRSEL`||CrSel/Props|
|`KC_EXSEL`||ExSel|
|`KC_SYSTEM_POWER`|`KC_PWR`|System Power Down. Recommended over `KC_POWER`.|
|`KC_SYSTEM_SLEEP`|`KC_SLEP`|System Sleep|
|`KC_SYSTEM_WAKE`|`KC_WAKE`|System Wake|
|`KC_MAIL`|`KC_MAIL`||
|`KC_CALCULATOR`|`KC_CALC`||
|`KC_MY_COMPUTER`|`KC_MYCM`||
|`KC_WWW_SEARCH`|`KC_WSCH`||
|`KC_WWW_HOME`|`KC_WHOM`||
|`KC_WWW_BACK`|`KC_WBAK`||
|`KC_WWW_FORWARD`|`KC_WFWD`||
|`KC_WWW_STOP`|`KC_WSTP`||
|`KC_WWW_REFRESH`|`KC_WREF`||
|`KC_WWW_FAVORITES`|`KC_WFAV`||
|`KC_STOP`||Stop|
|`KC__MUTE`||Mute (macOS)|
|`KC__VOLUP`||Volume Up (macOS)|
|`KC__VOLDOWN`||Volume Down (macOS)|
|`KC_AUDIO_MUTE`|`KC_MUTE`|Mute (Windows/macOS/Linux)|
|`KC_AUDIO_VOL_UP`|`KC_VOLU`|Volume Up (Windows/macOS/Linux)|
|`KC_AUDIO_VOL_DOWN`|`KC_VOLD`|Volume Down (Windows/macOS/Linux)|
|`KC_MEDIA_NEXT_TRACK`|`KC_MNXT`|Next Track (Windows)|
|`KC_MEDIA_PREV_TRACK`|`KC_MPRV`|Previous Track (Windows)|
|`KC_MEDIA_FAST_FORWARD`|`KC_MFFD`|Next Track (macOS)|
|`KC_MEDIA_REWIND`|`KC_MRWD`|Previous Track (macOS)|
|`KC_MEDIA_STOP`|`KC_MSTP`||
|`KC_MEDIA_PLAY_PAUSE`|`KC_MPLY`||
|`KC_MEDIA_SELECT`|`KC_MSEL`||
|`KC_NUMLOCK`|`KC_NLCK`|Keypad Num Lock and Clear|
|`KC_KP_SLASH`|`KC_PSLS`|Keypad /|
|`KC_KP_ASTERISK`|`KC_PAST`|Keypad *|
|`KC_KP_MINUS`|`KC_PMNS`|Keypad -|
|`KC_KP_PLUS`|`KC_PPLS`|Keypad +|
|`KC_KP_ENTER`|`KC_PENT`|Keypad ENTER`|
|`KC_KP_1`|`KC_P1`|Keypad 1 and End|
|`KC_KP_2`|`KC_P2`|Keypad 2 and Down Arrow|
|`KC_KP_3`|`KC_P3`|Keypad 3 and PageDn|
|`KC_KP_4`|`KC_P4`|Keypad 4 and Left Arrow|
|`KC_KP_5`|`KC_P5`|Keypad 5|
|`KC_KP_6`|`KC_P6`|Keypad 6 and Right Arrow|
|`KC_KP_7`|`KC_P7`|Keypad 7 and Home|
|`KC_KP_8`|`KC_P8`|Keypad 8 and Up Arrow|
|`KC_KP_9`|`KC_P9`|Keypad 9 and PageUp|
|`KC_KP_0`|`KC_P0`|Keypad 0 and Insert|
|`KC_KP_DOT`|`KC_PDOT`|Keypad . and Delete|
|`KC_KP_EQUAL`|`KC_PEQL`|Keypad =|
|`KC_KP_COMMA`|`KC_PCMM`|Keypad Comma|
|`KC_KP_EQUAL_AS400`||Keypad Equal Sign|
|`KC_NO`||Ignore this key. (NOOP) |
|`KC_TRNS`||Make this key transparent to find the key on a lower layer.|
|[`KC_MS_UP`](feature_mouse_keys.md)|`KC_MS_U`|Mouse Cursor Up|
|[`KC_MS_DOWN`](feature_mouse_keys.md)|`KC_MS_D`|Mouse Cursor Down|
|[`KC_MS_LEFT`](feature_mouse_keys.md)|`KC_MS_L`|Mouse Cursor Left|
|[`KC_MS_RIGHT`](feature_mouse_keys.md)|`KC_MS_R`|Mouse Cursor Right|
|[`KC_MS_BTN1`](feature_mouse_keys.md)|`KC_BTN1`|Mouse Button 1|
|[`KC_MS_BTN2`](feature_mouse_keys.md)|`KC_BTN2`|Mouse Button 2|
|[`KC_MS_BTN3`](feature_mouse_keys.md)|`KC_BTN3`|Mouse Button 3|
|[`KC_MS_BTN4`](feature_mouse_keys.md)|`KC_BTN4`|Mouse Button 4|
|[`KC_MS_BTN5`](feature_mouse_keys.md)|`KC_BTN5`|Mouse Button 5|
|[`KC_MS_WH_UP`](feature_mouse_keys.md)|`KC_WH_U`|Mouse Wheel Up|
|[`KC_MS_WH_DOWN`](feature_mouse_keys.md)|`KC_WH_D`|Mouse Wheel Down|
|[`KC_MS_WH_LEFT`](feature_mouse_keys.md)|`KC_WH_L`|Mouse Wheel Left|
|[`KC_MS_WH_RIGHT`](feature_mouse_keys.md)|`KC_WH_R`|Mouse Wheel Right|
|[`KC_MS_ACCEL0`](feature_mouse_keys.md)|`KC_ACL0`|Mouse Acceleration 0|
|[`KC_MS_ACCEL1`](feature_mouse_keys.md)|`KC_ACL1`|Mouse Acceleration 1|
|[`KC_MS_ACCEL2`](feature_mouse_keys.md)|`KC_ACL2`|Mouse Acceleration 2|
|[`RESET`](quantum_keycodes.md#qmk-keycodes)||Put the keyboard into DFU mode for flashing|
|[`DEBUG`](quantum_keycodes.md#qmk-keycodes)||Toggles debug mode|
|[`KC_GESC`](quantum_keycodes.md#qmk-keycodes)|`GRAVE_ESC`|Acts as escape when pressed normally but when pressed with Shift or GUI will send a `~`|
|[`KC_LSPO`](quantum_keycodes.md#qmk-keycodes)||Left shift when held, open paranthesis when tapped|
|[`KC_RSPC`](quantum_keycodes.md#qmk-keycodes)||Right shift when held, close paranthesis when tapped|
|[`KC_LEAD`](feature_leader_key.md)||The leader key|
|[`FUNC(n)`](quantum_keycodes.md#qmk-keycodes)|`F(n)`|Call `fn_action(n)`|
|[`M(n)`](quantum_keycodes.md#qmk-keycodes)||to call macro n|
|[`MACROTAP(n)`](quantum_keycodes.md#qmk-keycodes)||to macro-tap n idk FIXME`|
|[`MAGIC_SWAP_CONTROL_CAPSLOCK`](feature_bootmagic.md)||Swap Capslock and Left Control|
|[`MAGIC_CAPSLOCK_TO_CONTROL`](feature_bootmagic.md)||Treat Capslock like a Control Key|
|[`MAGIC_SWAP_LALT_LGUI`](feature_bootmagic.md)||Swap the left Alt and GUI keys|
|[`MAGIC_SWAP_RALT_RGUI`](feature_bootmagic.md)||Swap the right Alt and GUI keys|
|[`MAGIC_NO_GUI`](feature_bootmagic.md)||Disable the GUI key|
|[`MAGIC_SWAP_GRAVE_ESC`](feature_bootmagic.md)||Swap the Grave and Esc key.|
|[`MAGIC_SWAP_BACKSLASH_BACKSPACE`](feature_bootmagic.md)||Swap backslack and backspace|
|[`MAGIC_HOST_NKRO`](feature_bootmagic.md)||Force NKRO on|
|[`MAGIC_SWAP_ALT_GUI`/`AG_SWAP`](feature_bootmagic.md)||Swap Alt and Gui on both sides|
|[`MAGIC_UNSWAP_CONTROL_CAPSLOCK`](feature_bootmagic.md)||Disable the Control/Capslock swap|
|[`MAGIC_UNCAPSLOCK_TO_CONTROL`](feature_bootmagic.md)||Disable treating Capslock like Control |
|[`MAGIC_UNSWAP_LALT_LGUI`](feature_bootmagic.md)||Disable Left Alt and GUI switching|
|[`MAGIC_UNSWAP_RALT_RGUI`](feature_bootmagic.md)||Disable Right Alt and GUI switching|
|[`MAGIC_UNNO_GUI`](feature_bootmagic.md)||Enable the GUI key |
|[`MAGIC_UNSWAP_GRAVE_ESC`](feature_bootmagic.md)||Disable the Grave/Esc swap |
|[`MAGIC_UNSWAP_BACKSLASH_BACKSPACE`](feature_bootmagic.md)||Disable the backslash/backspace swap|
|[`MAGIC_UNHOST_NKRO`](feature_bootmagic.md)||Force NKRO off|
|[`MAGIC_UNSWAP_ALT_GUI`/`AG_NORM`](feature_bootmagic.md)||Disable the Alt/GUI switching|
|[`MAGIC_TOGGLE_NKRO`](feature_bootmagic.md)||Turn NKRO on or off|
|[`BL_x`](feature_backlight.md)||Set a specific backlight level between 0-9|
|[`BL_ON`](feature_backlight.md)||An alias for `BL_9`|
|[`BL_OFF`](feature_backlight.md)||An alias for `BL_0`|
|[`BL_DEC`](feature_backlight.md)||Turn the backlight level down by 1|
|[`BL_INC`](feature_backlight.md)||Turn the backlight level up by 1|
|[`BL_TOGG`](feature_backlight.md)||Toggle the backlight on or off|
|[`BL_STEP`](feature_backlight.md)||Step through backlight levels, wrapping around to 0 when you reach the top.|
|[`RGB_TOG`](feature_rgblight.md)||toggle on/off|
|[`RGB_MOD`](feature_rgblight.md)||cycle through modes|
|[`RGB_HUI`](feature_rgblight.md)||hue increase|
|[`RGB_HUD`](feature_rgblight.md)||hue decrease|
|[`RGB_SAI`](feature_rgblight.md)||saturation increase|
|[`RGB_SAD`](feature_rgblight.md)||saturation decrease|
|[`RGB_VAI`](feature_rgblight.md)||value increase|
|[`RGB_VAD`](feature_rgblight.md)||value decrease|
|[`PRINT_ON`](feature_thermal_printer.md)||Start printing everything the user types|
|[`PRINT_OFF`](feature_thermal_printer.md)||Stop printing everything the user types|
|[`OUT_AUTO`](feature_bluetooth.md)||auto mode|
|[`OUT_USB`](feature_bluetooth.md)||usb only|
|[`OUT_BT`](feature_bluetooth.md)||bluetooth (when `BLUETOOTH_ENABLE`)|
|[`KC_HYPR`](quantum_keycodes.md#modifiers)||Hold down LCTL + LSFT + LALT + LGUI`|
|[`KC_MEH`](quantum_keycodes.md#modifiers)||Hold down LCTL + LSFT + LALT`|
|[`LCTL(kc)`](quantum_keycodes.md#modifiers)||`LCTL` + `kc`|
|[`LSFT(kc)`](quantum_keycodes.md#modifiers)|[`S(kc)`](quantum_keycodes.md#modifiers)|`LSFT` + `kc`|
|[`LALT(kc)`](quantum_keycodes.md#modifiers)||`LALT` + `kc`|
|[`LGUI(kc)`](quantum_keycodes.md#modifiers)||`LGUI` + `kc`|
|[`RCTL(kc)`](quantum_keycodes.md#modifiers)||`RCTL` + `kc`|
|[`RSFT(kc)`](quantum_keycodes.md#modifiers)||`RSFT` + `kc`|
|[`RALT(kc)`](quantum_keycodes.md#modifiers)||`RALT` + `kc`|
|[`RGUI(kc)`](quantum_keycodes.md#modifiers)||`RGUI` + `kc`|
|[`HYPR(kc)`](quantum_keycodes.md#modifiers)||`LCTL` + `LSFT` + `LALT` + `LGUI` + `kc`|
|[`MEH(kc)`](quantum_keycodes.md#modifiers)||`LCTL` + `LSFT` + `LALT` + `kc`|
|[`LCAG(kc)`](quantum_keycodes.md#modifiers)||`LCTL` + `LALT` + `LGUI` + `kc`|
|[`ALTG(kc)`](quantum_keycodes.md#modifiers)||`RCTL` + `RALT` + `kc`|
|[`SCMD(kc)`](quantum_keycodes.md#modifiers)|[`SWIN(kc)`](quantum_keycodes.md#modifiers)|`LGUI` + `LSFT` + `kc`|
|[`LCA(kc)`](quantum_keycodes.md#modifiers)||`LCTL` + `LALT` + `kc`|
|[`CTL_T(kc)`](quantum_keycodes.md#mod-tap-keys)|[`LCTL_T(kc)`](quantum_keycodes.md#mod-tap-keys)|`LCTL` when held, `kc` when tapped|
|[`RCTL_T(kc)`](quantum_keycodes.md#mod-tap-keys)||[`RCTL` when held, `kc` when tapped|
|[`SFT_T(kc)`](quantum_keycodes.md#mod-tap-keys)|[`LSFT_T(kc)`](quantum_keycodes.md#mod-tap-keys)|`LSFT` when held, `kc` when tapped|
|[`RSFT_T(kc)`](quantum_keycodes.md#mod-tap-keys)||[`RSFT` when held, `kc` when tapped|
|[`ALT_T(kc)`](quantum_keycodes.md#mod-tap-keys)|[`LALT_T(kc)`](quantum_keycodes.md#mod-tap-keys)|`LALT` when held, `kc` when tapped|
|[`RALT_T(kc)`](quantum_keycodes.md#mod-tap-keys)|[`ALGR_T(kc)`](quantum_keycodes.md#mod-tap-keys)|`RALT` when held, `kc` when tapped|
|[`GUI_T(kc)`](quantum_keycodes.md#mod-tap-keys)|[`LGUI_T(kc)`](quantum_keycodes.md#mod-tap-keys)|`LGUI` when held, `kc` when tapped|
|[`RGUI_T(kc)`](quantum_keycodes.md#mod-tap-keys)||`RGUI` when held, `kc` when tapped|
|[`C_S_T(kc)`](quantum_keycodes.md#mod-tap-keys)||`LCTL` + `LSFT` when held, `kc` when tapped|
|[`MEH_T(kc)`](quantum_keycodes.md#mod-tap-keys)||`LCTL` + `LSFT` + `LALT` when held, `kc` when tapped|
|[`LCAG_T(kc)`](quantum_keycodes.md#mod-tap-keys)||`LCTL` + `LALT` + `LGUI` when held, `kc` when tapped|
|[`RCAG_T(kc)`](quantum_keycodes.md#mod-tap-keys)||`RCTL` + `RALT` + `RGUI` when held, `kc` when tapped|
|[`ALL_T(kc)`](quantum_keycodes.md#mod-tap-keys)||`LCTL` + `LSFT` + `LALT` + `LGUI` when held, `kc` when tapped [more info](http://brettterpstra.com/2012/12/08/a-useful-caps-lock-key/)|
|[`SCMD_T(kc)`](quantum_keycodes.md#mod-tap-keys)|[`SWIN_T(kc)`](quantum_keycodes.md#mod-tap-keys)|`LGUI` + `LSFT` when held, `kc` when tapped|
|[`LCA_T(kc)`](quantum_keycodes.md#mod-tap-keys)||`LCTL` + `LALT` when held, `kc` when tapped|
|[`KC_TILD`](keycodes_us_ansi_shifted.md)|`KC_TILDE`|tilde `~`|
|[`KC_EXLM`](keycodes_us_ansi_shifted.md)|`KC_EXCLAIM`|exclamation mark `!`|
|[`KC_AT`](keycodes_us_ansi_shifted.md)||at sign `@`|
|[`KC_HASH`](keycodes_us_ansi_shifted.md)||hash sign `#`|
|[`KC_DLR`](keycodes_us_ansi_shifted.md)|`KC_DOLLAR`|dollar sign `$`|
|[`KC_PERC`](keycodes_us_ansi_shifted.md)|`KC_PERCENT`|percent sign `%`|
|[`KC_CIRC`](keycodes_us_ansi_shifted.md)|`KC_CIRCUMFLEX`|circumflex `^`|
|[`KC_AMPR`](keycodes_us_ansi_shifted.md)|`KC_AMPERSAND`|ampersand `&`|
|[`KC_ASTR`](keycodes_us_ansi_shifted.md)|`KC_ASTERISK`|asterisk `*`|
|[`KC_LPRN`](keycodes_us_ansi_shifted.md)|`KC_LEFT_PAREN`|left parenthesis `(`|
|[`KC_RPRN`](keycodes_us_ansi_shifted.md)|`KC_RIGHT_PAREN`|right parenthesis `)`|
|[`KC_UNDS`](keycodes_us_ansi_shifted.md)|`KC_UNDERSCORE`|underscore `_`|
|[`KC_PLUS`](keycodes_us_ansi_shifted.md)||plus sign `+`|
|[`KC_LCBR`](keycodes_us_ansi_shifted.md)|`KC_LEFT_CURLY_BRACE`|left curly brace `{`|
|[`KC_RCBR`](keycodes_us_ansi_shifted.md)|`KC_RIGHT_CURLY_BRACE`|right curly brace `}`|
|[`KC_LT`/`KC_LABK`](keycodes_us_ansi_shifted.md)|`KC_LEFT_ANGLE_BRACKET`|left angle bracket `<`|
|[`KC_GT`/`KC_RABK`](keycodes_us_ansi_shifted.md)|`KC_RIGHT_ANGLE_BRACKET`|right angle bracket `>`|
|[`KC_COLN`](keycodes_us_ansi_shifted.md)|`KC_COLON`|colon `:`|
|[`KC_PIPE`](keycodes_us_ansi_shifted.md)||pipe `\|`|
|[`KC_QUES`](keycodes_us_ansi_shifted.md)|`KC_QUESTION`|question mark `?`|
|[`KC_DQT`/`KC_DQUO`](keycodes_us_ansi_shifted.md)|`KC_DOUBLE_QUOTE`|double quote `"`|
|[`LT(layer, kc)`](feature_common_shortcuts.md#switching-and-toggling-layers)||turn on layer (0-15) when held, kc ([basic keycodes](keycodes_basic.md)) when tapped|
|[`TO(layer)`](feature_common_shortcuts.md#switching-and-toggling-layers)||turn on layer when depressed|
|[`MO(layer)`](feature_common_shortcuts.md#switching-and-toggling-layers)||momentarily turn on layer when depressed (requires `KC_TRNS` on destination layer)|
|[`DF(layer)`](feature_common_shortcuts.md#switching-and-toggling-layers)||sets the base (default) layer|
|[`TG(layer)`](feature_common_shortcuts.md#switching-and-toggling-layers)||toggle layer on/off|
|[`TT(layer)`](feature_common_shortcuts.md#switching-and-toggling-layers)||tap toggle? idk FIXME`|
|[`OSM(mod)`](quantum_keycodes.md#one-shot-keys)||hold mod for one keypress|
|[`OSL(layer)`](quantum_keycodes.md#one-shot-keys)||switch to layer for one keypress|
|[`UNICODE(n)`](feature_unicode.md)|[`UC(n)`](feature_unicode.md)|if `UNICODE_ENABLE`, this will send characters up to `0x7FFF`|
|[`X(n)`](feature_unicode.md)||if `UNICODEMAP_ENABLE`, also sends unicode via a different method|
## [Basic Keycodes](keycodes_basic.md)
|Key |Aliases |Description |
|-----------------------|----------|-----------------------------------------------|
|`KC_1` | |`1` and `!` |
|`KC_2` | |`2` and `@` |
|`KC_3` | |`3` and `#` |
|`KC_4` | |`4` and `$` |
|`KC_5` | |`5` and `%` |
|`KC_6` | |`6` and `^` |
|`KC_7` | |`7` and `&` |
|`KC_8` | |`8` and `*` |
|`KC_9` | |`9` and `(` |
|`KC_0` | |`0` and `)` |
|`KC_F1` | | |
|`KC_F2` | | |
|`KC_F3` | | |
|`KC_F4` | | |
|`KC_F5` | | |
|`KC_F6` | | |
|`KC_F7` | | |
|`KC_F8` | | |
|`KC_F9` | | |
|`KC_F10` | | |
|`KC_F11` | | |
|`KC_F12` | | |
|`KC_F13` | | |
|`KC_F14` | | |
|`KC_F15` | | |
|`KC_F16` | | |
|`KC_F17` | | |
|`KC_F18` | | |
|`KC_F19` | | |
|`KC_F20` | | |
|`KC_F21` | | |
|`KC_F22` | | |
|`KC_F23` | | |
|`KC_F24` | | |
|`KC_A` | |`a` and `A` |
|`KC_B` | |`b` and `B` |
|`KC_C` | |`c` and `C` |
|`KC_D` | |`d` and `D` |
|`KC_E` | |`e` and `E` |
|`KC_F` | |`f` and `F` |
|`KC_G` | |`g` and `G` |
|`KC_H` | |`h` and `H` |
|`KC_I` | |`i` and `I` |
|`KC_J` | |`j` and `J` |
|`KC_K` | |`k` and `K` |
|`KC_L` | |`l` and `L` |
|`KC_M` | |`m` and `M` |
|`KC_N` | |`n` and `N` |
|`KC_O` | |`o` and `O` |
|`KC_P` | |`p` and `P` |
|`KC_Q` | |`q` and `Q` |
|`KC_R` | |`r` and `R` |
|`KC_S` | |`s` and `S` |
|`KC_T` | |`t` and `T` |
|`KC_U` | |`u` and `U` |
|`KC_V` | |`v` and `V` |
|`KC_W` | |`w` and `W` |
|`KC_X` | |`x` and `X` |
|`KC_Y` | |`y` and `Y` |
|`KC_Z` | |`z` and `Z` |
|`KC_ENTER` |`KC_ENT` |Return (Enter) |
|`KC_ESCAPE` |`KC_ESC` |Escape |
|`KC_BSPACE` |`KC_BSPC` |Delete (Backspace) |
|`KC_TAB` | |Tab |
|`KC_SPACE` |`KC_SPC` |Spacebar |
|`KC_MINUS` |`KC_MINS` |`-` and `_` |
|`KC_EQUAL` |`KC_EQL` |`=` and `+` |
|`KC_LBRACKET` |`KC_LBRC` |`[` and `{` |
|`KC_RBRACKET` |`KC_RBRC` |`]` and `}` |
|`KC_BSLASH` |`KC_BSLS` |`\` and <code>&#124;</code> |
|`KC_NONUS_HASH` |`KC_NUHS` |Non-US `#` and `~` |
|`KC_NONUS_BSLASH` |`KC_NUBS` |Non-US `\` and <code>&#124;</code> |
|`KC_INT1` |`KC_RO` |JIS `\` and <code>&#124;</code> |
|`KC_INT2` |`KC_KANA` |JIS Katakana/Hiragana |
|`KC_INT3` |`KC_JYEN` |JIS `¥` |
|`KC_SCOLON` |`KC_SCLN` |`;` and `:` |
|`KC_QUOTE` |`KC_QUOT` |`'` and `"` |
|`KC_GRAVE` |`KC_GRV` |<code>&#96;</code> and `~` |
|`KC_COMMA` |`KC_COMM` |`,` and `<` |
|`KC_DOT` | |`.` and `>` |
|`KC_SLASH` |`KC_SLSH` |`/` and `?` |
|`KC_CAPSLOCK` |`KC_CAPS` |Caps Lock |
|`KC_LCTRL` |`KC_LCTL` |Left Control |
|`KC_LSHIFT` |`KC_LSFT` |Left Shift |
|`KC_LALT` | |Left Alt |
|`KC_LGUI` | |Left GUI (Windows/Command/Meta key) |
|`KC_RCTRL` |`KC_RCTL` |Right Control |
|`KC_RSHIFT` |`KC_RSFT` |Right Shift |
|`KC_RALT` | |Right Alt |
|`KC_RGUI` | |Right GUI (Windows/Command/Meta key) |
|`KC_LOCKING_CAPS` |`KC_LCAP` |Locking Caps Lock |
|`KC_LOCKING_NUM` |`KC_LNUM` |Locking Num Lock |
|`KC_LOCKING_SCROLL` |`KC_LSCR` |Locking Scroll Lock |
|`KC_INT4` |`KC_HENK` |JIS Henkan |
|`KC_INT5` |`KC_MHEN` |JIS Muhenkan |
|`KC_PSCREEN` |`KC_PSCR` |Print Screen |
|`KC_SCROLLLOCK` |`KC_SLCK` |Scroll Lock |
|`KC_PAUSE` |`KC_PAUS` |Pause |
|`KC_INSERT` |`KC_INS` |Insert |
|`KC_HOME` | |Home |
|`KC_PGUP` | |Page Up |
|`KC_DELETE` |`KC_DEL` |Forward Delete |
|`KC_END` | |End |
|`KC_PGDOWN` |`KC_PGDN` |Page Down |
|`KC_RIGHT` |`KC_RGHT` |Right Arrow |
|`KC_LEFT` | |Left Arrow |
|`KC_DOWN` | |Down Arrow |
|`KC_UP` | |Up Arrow |
|`KC_APPLICATION` |`KC_APP` |Application (Windows Menu Key) |
|`KC_POWER` | |Deprecated by MS in favor of `KC_SYSTEM_POWER`.|
|`KC_EXECUTE` | |Execute |
|`KC_HELP` | |Help |
|`KC_MENU` | |Menu |
|`KC_SELECT` | |Select |
|`KC_AGAIN` | |Again |
|`KC_UNDO` | |Undo |
|`KC_CUT` | |Cut |
|`KC_COPY` | |Copy |
|`KC_PASTE` | |Paste |
|`KC_FIND` | |Find |
|`KC_ALT_ERASE` | |Alternate Erase |
|`KC_SYSREQ` | |SysReq/Attention |
|`KC_CANCEL` | |Cancel |
|`KC_CLEAR` | |Clear |
|`KC_PRIOR` | |Prior |
|`KC_RETURN` | |Return |
|`KC_SEPARATOR` | |Separator |
|`KC_OUT` | |Out |
|`KC_OPER` | |Oper |
|`KC_CLEAR_AGAIN` | |Clear/Again |
|`KC_CRSEL` | |CrSel/Props |
|`KC_EXSEL` | |ExSel |
|`KC_SYSTEM_POWER` |`KC_PWR` |System Power Down. Recommended over `KC_POWER`.|
|`KC_SYSTEM_SLEEP` |`KC_SLEP` |System Sleep |
|`KC_SYSTEM_WAKE` |`KC_WAKE` |System Wake |
|`KC_MAIL` |`KC_MAIL` | |
|`KC_CALCULATOR` |`KC_CALC` | |
|`KC_MY_COMPUTER` |`KC_MYCM` | |
|`KC_WWW_SEARCH` |`KC_WSCH` | |
|`KC_WWW_HOME` |`KC_WHOM` | |
|`KC_WWW_BACK` |`KC_WBAK` | |
|`KC_WWW_FORWARD` |`KC_WFWD` | |
|`KC_WWW_STOP` |`KC_WSTP` | |
|`KC_WWW_REFRESH` |`KC_WREF` | |
|`KC_WWW_FAVORITES` |`KC_WFAV` | |
|`KC_STOP` | |Stop |
|`KC__MUTE` | |Mute (macOS) |
|`KC__VOLUP` | |Volume Up (macOS) |
|`KC__VOLDOWN` | |Volume Down (macOS) |
|`KC_AUDIO_MUTE` |`KC_MUTE` |Mute (Windows/macOS/Linux) |
|`KC_AUDIO_VOL_UP` |`KC_VOLU` |Volume Up (Windows/macOS/Linux) |
|`KC_AUDIO_VOL_DOWN` |`KC_VOLD` |Volume Down (Windows/macOS/Linux) |
|`KC_MEDIA_NEXT_TRACK` |`KC_MNXT` |Next Track (Windows) |
|`KC_MEDIA_PREV_TRACK` |`KC_MPRV` |Previous Track (Windows) |
|`KC_MEDIA_FAST_FORWARD`|`KC_MFFD` |Next Track (macOS) |
|`KC_MEDIA_REWIND` |`KC_MRWD` |Previous Track (macOS) |
|`KC_MEDIA_STOP` |`KC_MSTP` |Stop Track |
|`KC_MEDIA_PLAY_PAUSE` |`KC_MPLY` |Play/Pause Track |
|`KC_MEDIA_SELECT` |`KC_MSEL` | |
|`KC_NUMLOCK` |`KC_NLCK` |Keypad Num Lock and Clear |
|`KC_KP_SLASH` |`KC_PSLS` |Keypad `/` |
|`KC_KP_ASTERISK` |`KC_PAST` |Keypad `*` |
|`KC_KP_MINUS` |`KC_PMNS` |Keypad `-` |
|`KC_KP_PLUS` |`KC_PPLS` |Keypad `+` |
|`KC_KP_ENTER` |`KC_PENT` |Keypad Enter |
|`KC_KP_1` |`KC_P1` |Keypad `1` and End |
|`KC_KP_2` |`KC_P2` |Keypad `2` and Down Arrow |
|`KC_KP_3` |`KC_P3` |Keypad `3` and Page Down |
|`KC_KP_4` |`KC_P4` |Keypad `4` and Left Arrow |
|`KC_KP_5` |`KC_P5` |Keypad `5` |
|`KC_KP_6` |`KC_P6` |Keypad `6` and Right Arrow |
|`KC_KP_7` |`KC_P7` |Keypad `7` and Home |
|`KC_KP_8` |`KC_P8` |Keypad `8` and Up Arrow |
|`KC_KP_9` |`KC_P9` |Keypad `9` and Page Up |
|`KC_KP_0` |`KC_P0` |Keypad `0` and Insert |
|`KC_KP_DOT` |`KC_PDOT` |Keypad `.` and Delete |
|`KC_KP_EQUAL` |`KC_PEQL` |Keypad `=` |
|`KC_KP_COMMA` |`KC_PCMM` |Keypad `,` |
|`KC_KP_EQUAL_AS400` | |Keypad `=` on AS/400 keyboards |
|`KC_NO` | |Ignore this key (NOOP) |
|`KC_TRANSPARENT` |`KC_TRNS` |Use the next lowest non-transparent key |
## [Mouse Keys](feature_mouse_keys.md)
|Key |Aliases |Description |
|----------------|---------|---------------------------|
|`KC_MS_UP` |`KC_MS_U`|Mouse Cursor Up |
|`KC_MS_DOWN` |`KC_MS_D`|Mouse Cursor Down |
|`KC_MS_LEFT` |`KC_MS_L`|Mouse Cursor Left |
|`KC_MS_RIGHT` |`KC_MS_R`|Mouse Cursor Right |
|`KC_MS_BTN1` |`KC_BTN1`|Mouse Button 1 |
|`KC_MS_BTN2` |`KC_BTN2`|Mouse Button 2 |
|`KC_MS_BTN3` |`KC_BTN3`|Mouse Button 3 |
|`KC_MS_BTN4` |`KC_BTN4`|Mouse Button 4 |
|`KC_MS_BTN5` |`KC_BTN5`|Mouse Button 5 |
|`KC_MS_WH_UP` |`KC_WH_U`|Mouse Wheel Up |
|`KC_MS_WH_DOWN` |`KC_WH_D`|Mouse Wheel Down |
|`KC_MS_WH_LEFT` |`KC_WH_L`|Mouse Wheel Left |
|`KC_MS_WH_RIGHT`|`KC_WH_R`|Mouse Wheel Right |
|`KC_MS_ACCEL0` |`KC_ACL0`|Set mouse acceleration to 0|
|`KC_MS_ACCEL1` |`KC_ACL1`|Set mouse acceleration to 1|
|`KC_MS_ACCEL2` |`KC_ACL2`|Set mouse acceleration to 2|
## [Quantum Keycodes](quantum_keycodes.md#qmk-keycodes)
|Key |Aliases |Description |
|-------------|-----------|---------------------------------------------------------------------|
|`RESET` | |Put the keyboard into DFU mode for flashing |
|`DEBUG` | |Toggle debug mode |
|`KC_GESC` |`GRAVE_ESC`|Escape when tapped, <code>&#96;</code> when pressed with Shift or GUI|
|`KC_LSPO` | |Left Shift when held, `(` when tapped |
|`KC_RSPC` | |Right Shift when held, `)` when tapped |
|`KC_LEAD` | |The [Leader key](feature_leader_key.md) |
|`KC_LOCK` | |The [Lock key](feature_key_lock.md) |
|`FUNC(n)` |`F(n)` |Call `fn_action(n)` (deprecated) |
|`M(n)` | |Call macro `n` |
|`MACROTAP(n)`| |Macro-tap `n` idk FIXME |
## [Bootmagic](feature_bootmagic.md)
|Key |Aliases |Description |
|----------------------------------|---------|------------------------------------|
|`MAGIC_SWAP_CONTROL_CAPSLOCK` | |Swap Caps Lock and Left Control |
|`MAGIC_CAPSLOCK_TO_CONTROL` | |Treat Caps Lock as Control |
|`MAGIC_SWAP_LALT_LGUI` | |Swap Left Alt and GUI |
|`MAGIC_SWAP_RALT_RGUI` | |Swap Right Alt and GUI |
|`MAGIC_NO_GUI` | |Disable the GUI key |
|`MAGIC_SWAP_GRAVE_ESC` | |Swap <code>&#96;</code> and Escape |
|`MAGIC_SWAP_BACKSLASH_BACKSPACE` | |Swap `\` and Backspace |
|`MAGIC_HOST_NKRO` | |Force NKRO on |
|`MAGIC_SWAP_ALT_GUI` |`AG_SWAP`|Swap Alt and GUI on both sides |
|`MAGIC_UNSWAP_CONTROL_CAPSLOCK` | |Unswap Caps Lock and Left Control |
|`MAGIC_UNCAPSLOCK_TO_CONTROL` | |Stop treating Caps Lock as Control |
|`MAGIC_UNSWAP_LALT_LGUI` | |Unswap Left Alt and GUI |
|`MAGIC_UNSWAP_RALT_RGUI` | |Unswap Right Alt and GUI |
|`MAGIC_UNNO_GUI` | |Enable the GUI key |
|`MAGIC_UNSWAP_GRAVE_ESC` | |Unswap <code>&#96;</code> and Escape|
|`MAGIC_UNSWAP_BACKSLASH_BACKSPACE`| |Unswap `\` and Backspace |
|`MAGIC_UNHOST_NKRO` | |Force NKRO off |
|`MAGIC_UNSWAP_ALT_GUI` |`AG_NORM`|Unswap Alt and GUI on both sides |
|`MAGIC_TOGGLE_NKRO` | |Turn NKRO on or off |
## [Backlighting](feature_backlight.md)
|Key |Description |
|---------|------------------------------------------|
|`BL_TOGG`|Turn the backlight on or off |
|`BL_STEP`|Cycle through backlight levels |
|`BL_x` |Set a specific backlight level between 0-9|
|`BL_ON` |An alias for `BL_9` |
|`BL_OFF` |An alias for `BL_0` |
|`BL_INC` |Increase backlight level |
|`BL_DEC` |Decrease backlight level |
## [RGB Lighting](feature_rgblight.md)
|Key |Aliases |Description |
|-------------------|----------|--------------------------------------------------------------------|
|`RGB_TOG` | |Toggle RGB lighting on or off |
|`RGB_MODE_FORWARD` |`RGB_MOD` |Cycle through modes, reverse direction when Shift is held |
|`RGB_MODE_REVERSE` |`RGB_RMOD`|Cycle through modes in reverse, forward direction when Shift is held|
|`RGB_HUI` | |Increase hue |
|`RGB_HUD` | |Decrease hue |
|`RGB_SAI` | |Increase saturation |
|`RGB_SAD` | |Decrease saturation |
|`RGB_VAI` | |Increase value (brightness) |
|`RGB_VAD` | |Decrease value (brightness) |
|`RGB_MODE_PLAIN` |`RGB_M_P `|Static (no animation) mode |
|`RGB_MODE_BREATHE` |`RGB_M_B` |Breathing animation mode |
|`RGB_MODE_RAINBOW` |`RGB_M_R` |Rainbow animation mode |
|`RGB_MODE_SWIRL` |`RGB_M_SW`|Swirl animation mode |
|`RGB_MODE_SNAKE` |`RGB_M_SN`|Snake animation mode |
|`RGB_MODE_KNIGHT` |`RGB_M_K` |"Knight Rider" animation mode |
|`RGB_MODE_XMAS` |`RGB_M_X` |Christmas animation mode |
|`RGB_MODE_GRADIENT`|`RGB_M_G` |Static gradient animation mode |
## [Thermal Printer](feature_thermal_printer.md)
|Key |Description |
|-----------|----------------------------------------|
|`PRINT_ON` |Start printing everything the user types|
|`PRINT_OFF`|Stop printing everything the user types |
## [Bluetooth](feature_bluetooth.md)
|Key |Description |
|----------|----------------------------------------------|
|`OUT_AUTO`|Automatically switch between USB and Bluetooth|
|`OUT_USB` |USB only |
|`OUT_BT` |Bluetooth only |
## [Modifiers](quantum_keycodes.md#modifiers)
|Key |Aliases |Description |
|----------|----------|----------------------------------------------------|
|`KC_HYPR` | |Hold Left Control, Shift, Alt and GUI |
|`KC_MEH` | |Hold Left Control, Shift and Alt |
|`LCTL(kc)`| |Hold Left Control and press `kc` |
|`LSFT(kc)`|`S(kc)` |Hold Left Shift and press `kc` |
|`LALT(kc)`| |Hold Left Alt and press `kc` |
|`LGUI(kc)`| |Hold Left GUI and press `kc` |
|`RCTL(kc)`| |Hold Right Control and press `kc` |
|`RSFT(kc)`| |Hold Right Shift and press `kc` |
|`RALT(kc)`| |Hold Right Alt and press `kc` |
|`RGUI(kc)`| |Hold Right GUI and press `kc` |
|`HYPR(kc)`| |Hold Left Control, Shift, Alt and GUI and press `kc`|
|`MEH(kc)` | |Hold Left Control, Shift and Alt and press `kc` |
|`LCAG(kc)`| |Hold Left Control, Alt and GUI and press `kc` |
|`ALTG(kc)`| |Hold Right Control and Alt and press `kc` |
|`SCMD(kc)`|`SWIN(kc)`|Hold Left Shift and GUI and press `kc` |
|`LCA(kc)` | |Hold Left Control and Alt and press `kc` |
## [Mod-Tap Keys](quantum_keycodes.md#mod-tap-keys)
|Key |Aliases |Description |
|------------|------------|-------------------------------------------------------|
|`LCTL_T(kc)`|`CTL_T(kc)` |Left Control when held, `kc` when tapped |
|`RCTL_T(kc)`| |Right Control when held, `kc` when tapped |
|`LSFT_T(kc)`|`SFT_T(kc)` |Left Shift when held, `kc` when tapped |
|`RSFT_T(kc)`| |Right Shift when held, `kc` when tapped |
|`LALT_T(kc)`|`ALT_T(kc)` |Left Alt when held, `kc` when tapped |
|`RALT_T(kc)`|`ALGR_T(kc)`|Right Alt when held, `kc` when tapped |
|`LGUI_T(kc)`|`GUI_T(kc)` |Left GUI when held, `kc` when tapped |
|`RGUI_T(kc)`| |Right GUI when held, `kc` when tapped |
|`C_S_T(kc)` | |Left Control and Shift when held, `kc` when tapped |
|`MEH_T(kc)` | |Left Control, Shift and Alt when held, `kc` when tapped|
|`LCAG_T(kc)`| |Left Control, Alt and GUI when held, `kc` when tapped |
|`RCAG_T(kc)`| |Right Control, Alt and GUI when held, `kc` when tapped |
|`ALL_T(kc)` | |Left Control, Shift, Alt and GUI when held, `kc` when tapped - more info [here](http://brettterpstra.com/2012/12/08/a-useful-caps-lock-key/)|
|`SCMD_T(kc)`|`SWIN_T(kc)`|Left Shift and GUI when held, `kc` when tapped |
|`LCA_T(kc)` | |Left Control and Alt when held, `kc` when tapped |
## [US ANSI Shifted Keys](keycodes_us_ansi_shifted.md)
|Key |Aliases |Description |
|------------------------|------------------|-------------------|
|`KC_TILDE` |`KC_TILD` |`~` |
|`KC_EXCLAIM` |`KC_EXLM` |`!` |
|`KC_AT` | |`@` |
|`KC_HASH` | |`#` |
|`KC_DOLLAR` |`KC_DLR` |`$` |
|`KC_PERCENT` |`KC_PERC` |`%` |
|`KC_CIRCUMFLEX` |`KC_CIRC` |`^` |
|`KC_AMPERSAND` |`KC_AMPR` |`&` |
|`KC_ASTERISK` |`KC_ASTR` |`*` |
|`KC_LEFT_PAREN` |`KC_LPRN` |`(` |
|`KC_RIGHT_PAREN` |`KC_RPRN` |`)` |
|`KC_UNDERSCORE` |`KC_UNDS` |`_` |
|`KC_PLUS` | |`+` |
|`KC_LEFT_CURLY_BRACE` |`KC_LCBR` |`{` |
|`KC_RIGHT_CURLY_BRACE` |`KC_RCBR` |`}` |
|`KC_PIPE` | |<code>&#124;</code>|
|`KC_COLON` |`KC_COLN` |`:` |
|`KC_DOUBLE_QUOTE` |`KC_DQT`/`KC_DQUO`|`"` |
|`KC_LEFT_ANGLE_BRACKET` |`KC_LT`/`KC_LABK` |`<` |
|`KC_RIGHT_ANGLE_BRACKET`|`KC_GT`/`KC_RABK` |`>` |
|`KC_QUESTION` |`KC_QUES` |`?` |
## [Switching and Toggling Layers](feature_common_shortcuts.md#switching-and-toggling-layers)
|Key |Description |
|---------------|----------------------------------------------------------------------------------|
|`LT(layer, kc)`|Turn on `layer` when held, `kc` when tapped |
|`TO(layer)` |Turn on `layer` when pressed |
|`MO(layer)` |Momentarily turn on `layer` when pressed (requires `KC_TRNS` on destination layer)|
|`DF(layer)` |Set the base (default) layer |
|`TG(layer)` |Toggle `layer` on or off |
|`TT(layer)` |Tap toggle? idk FIXME |
## [One Shot Keys](quantum_keycodes.md#one-shot-keys)
|Key |Description |
|------------|----------------------------------|
|`OSM(mod)` |Hold `mod` for one keypress |
|`OSL(layer)`|Switch to `layer` for one keypress|
## [Unicode Support](feature_unicode.md)
|Key |Aliases| |
|------------|-------|-------------------------------------------------|
|`UNICODE(n)`|`UC(n)`|Send Unicode character `n` |
|`X(n)` | |Send Unicode character `n` via a different method|

View File

@@ -1,192 +1,230 @@
# Basic keycodes
# Basic Keycodes
Basic keycodes are based on [HID Usage Keyboard/Keypad Page(0x07)](http://www.usb.org/developers/hidpage/Hut1_12v2.pdf) with following exceptions:
* `KC_NO` = 0 for no action
* `KC_TRNS` = 1 for layer transparency
* internal special keycodes in the `0xA5-DF` range (tmk heritage).
The basic set of keycodes are based on the [HID Keyboard/Keypad Usage Page (0x07)](http://www.usb.org/developers/hidpage/Hut1_12v2.pdf) with the exception of `KC_NO`, `KC_TRNS` and keycodes in the `0xA5-DF` range. See below for more details.
## Letters and Numbers
|KC_1|KC_2|KC_3|KC_4|KC_5|KC_6|KC_7|KC_8|
|----|----|----|----|----|----|----|----|
|KC_9|KC_0|KC_F1|KC_F2|KC_F3|KC_F4|KC_F5|KC_F6|
|KC_F7|KC_F8|KC_F9|KC_F10|KC_F11|KC_F12|KC_F13|KC_F14|
|KC_F15|KC_F16|KC_F17|KC_F18|KC_F19|KC_F20|KC_F21|KC_F22|
|KC_F23|KC_F24|KC_A|KC_B|KC_C|KC_D|KC_E|KC_F|
|KC_G|KC_H|KC_I|KC_J|KC_K|KC_L|KC_M|KC_N|
|KC_O|KC_P|KC_Q|KC_R|KC_S|KC_T|KC_U|KC_V|
|KC_W|KC_X|KC_Y|KC_Z|||||
|Key |Description|
|------|-----------|
|`KC_A`|`a` and `A`|
|`KC_B`|`b` and `B`|
|`KC_C`|`c` and `C`|
|`KC_D`|`d` and `D`|
|`KC_E`|`e` and `E`|
|`KC_F`|`f` and `F`|
|`KC_G`|`g` and `G`|
|`KC_H`|`h` and `H`|
|`KC_I`|`i` and `I`|
|`KC_J`|`j` and `J`|
|`KC_K`|`k` and `K`|
|`KC_L`|`l` and `L`|
|`KC_M`|`m` and `M`|
|`KC_N`|`n` and `N`|
|`KC_O`|`o` and `O`|
|`KC_P`|`p` and `P`|
|`KC_Q`|`q` and `Q`|
|`KC_R`|`r` and `R`|
|`KC_S`|`s` and `S`|
|`KC_T`|`t` and `T`|
|`KC_U`|`u` and `U`|
|`KC_V`|`v` and `V`|
|`KC_W`|`w` and `W`|
|`KC_X`|`x` and `X`|
|`KC_Y`|`y` and `Y`|
|`KC_Z`|`z` and `Z`|
|`KC_1`|`1` and `!`|
|`KC_2`|`2` and `@`|
|`KC_3`|`3` and `#`|
|`KC_4`|`4` and `$`|
|`KC_5`|`5` and `%`|
|`KC_6`|`6` and `^`|
|`KC_7`|`7` and `&`|
|`KC_8`|`8` and `*`|
|`KC_9`|`9` and `(`|
|`KC_0`|`0` and `)`|
## F Keys
|Key |Description|
|--------|-----------|
|`KC_F1` | |
|`KC_F2` | |
|`KC_F3` | |
|`KC_F4` | |
|`KC_F5` | |
|`KC_F6` | |
|`KC_F7` | |
|`KC_F8` | |
|`KC_F9` | |
|`KC_F10`| |
|`KC_F11`| |
|`KC_F12`| |
|`KC_F13`| |
|`KC_F14`| |
|`KC_F15`| |
|`KC_F16`| |
|`KC_F17`| |
|`KC_F18`| |
|`KC_F19`| |
|`KC_F20`| |
|`KC_F21`| |
|`KC_F22`| |
|`KC_F23`| |
|`KC_F24`| |
## Punctuation
|Long Name|Short Name|Description|
|---------|----------|-----------|
|KC_ENTER|KC_ENT|`Return (ENTER)`|
|KC_ESCAPE|KC_ESC|`ESCAPE`|
|KC_BSPACE|KC_BSPC|`DELETE (Backspace)`|
|KC_TAB||`Tab`|
|KC_SPACE|KC_SPC|Spacebar|
|KC_MINUS|KC_MINS|`-` and `_`|
|KC_EQUAL|KC_EQL|`=` and `+`|
|KC_LBRACKET|KC_LBRC|`[` and `{`|
|KC_RBRACKET|KC_RBRC|`]` and `}`|
|KC_BSLASH|KC_BSLS|`\` and <code>&#124;</code> |
|KC_NONUS_HASH|KC_NUHS|Non-US `#` and `~`|
|KC_NONUS_BSLASH|KC_NUBS|Non-US `\` and <code>&#124;</code> |
|KC_INT1|KC_RO|JIS `\` and <code>&#124;</code> |
|KC_INT2|KC_KANA|International216|
|KC_INT3|KC_JYEN|Yen Symbol (`¥`)|
|KC_SCOLON|KC_SCLN|`;` and `:`|
|KC_QUOTE|KC_QUOT|`` and ``|
|KC_GRAVE|KC_GRV|Grave Accent and Tilde|
|KC_COMMA|KC_COMM|`,` and `<`|
|KC_DOT||`.` and `>`|
|KC_SLASH|KC_SLSH|`/` and `?`|
|KC_CAPSLOCK|KC_CAPS|Caps Lock|
|Key |Aliases |Description |
|-----------------|---------|----------------------------------|
|`KC_ENTER` |`KC_ENT` |Return (Enter) |
|`KC_ESCAPE` |`KC_ESC` |Escape |
|`KC_BSPACE` |`KC_BSPC`|Delete (Backspace) |
|`KC_TAB` | |Tab |
|`KC_SPACE` |`KC_SPC` |Spacebar |
|`KC_MINUS` |`KC_MINS`|`-` and `_` |
|`KC_EQUAL` |`KC_EQL` |`=` and `+` |
|`KC_LBRACKET` |`KC_LBRC`|`[` and `{` |
|`KC_RBRACKET` |`KC_RBRC`|`]` and `}` |
|`KC_BSLASH` |`KC_BSLS`|`\` and <code>&#124;</code> |
|`KC_NONUS_HASH` |`KC_NUHS`|Non-US `#` and `~` |
|`KC_NONUS_BSLASH`|`KC_NUBS`|Non-US `\` and <code>&#124;</code>|
|`KC_INT1` |`KC_RO` |JIS `\` and <code>&#124;</code> |
|`KC_INT2` |`KC_KANA`|JIS Katakana/Hiragana |
|`KC_INT3` |`KC_JYEN`|JIS `¥` |
|`KC_SCOLON` |`KC_SCLN`|`;` and `:` |
|`KC_QUOTE` |`KC_QUOT`|`'` and `"` |
|`KC_GRAVE` |`KC_GRV` |<code>&#96;</code> and `~` |
|`KC_COMMA` |`KC_COMM`|`,` and `<` |
|`KC_DOT` | |`.` and `>` |
|`KC_SLASH` |`KC_SLSH`|`/` and `?` |
|`KC_CAPSLOCK` |`KC_CAPS`|Caps Lock |
## Modifiers
|Long Name|Short Name|Description|
|---------|----------|-----------|
|KC_LCTRL|KC_LCTL|LeftControl|
|KC_LSHIFT|KC_LSFT|LeftShift|
|KC_LALT||LeftAlt|
|KC_LGUI||Left GUI(Windows/Apple/Meta key)|
|KC_RCTRL|KC_RCTL|RightControl|
|KC_RSHIFT|KC_RSFT|RightShift|
|KC_RALT||RightAlt|
|KC_RGUI||Right GUI(Windows/Apple/Meta key)|
|KC_LOCKING_CAPS|KC_LCAP|Locking Caps Lock|
|KC_LOCKING_NUM|KC_LNUM|Locking Num Lock|
|KC_LOCKING_SCROLL|KC_LSCR|Locking Scroll Lock|
|KC_INT4|KC_HENK|JIS Henken|
|KC_INT5|KC_MHEN|JIS Muhenken|
|Key |Aliases |Description |
|-------------------|---------|------------------------------------|
|`KC_LCTRL` |`KC_LCTL`|Left Control |
|`KC_LSHIFT` |`KC_LSFT`|Left Shift |
|`KC_LALT` | |Left Alt |
|`KC_LGUI` | |Left GUI (Windows/Command/Meta key) |
|`KC_RCTRL` |`KC_RCTL`|Right Control |
|`KC_RSHIFT` |`KC_RSFT`|Right Shift |
|`KC_RALT` | |Right Alt |
|`KC_RGUI` | |Right GUI (Windows/Command/Meta key)|
|`KC_LOCKING_CAPS` |`KC_LCAP`|Locking Caps Lock |
|`KC_LOCKING_NUM` |`KC_LNUM`|Locking Num Lock |
|`KC_LOCKING_SCROLL`|`KC_LSCR`|Locking Scroll Lock |
|`KC_INT4` |`KC_HENK`|JIS Henkan |
|`KC_INT5` |`KC_MHEN`|JIS Muhenkan |
## Commands
|Long Name|Short Name|Description|
|---------|----------|-----------|
|KC_PSCREEN|KC_PSCR|PrintScreen|
|KC_SCROLLLOCK|KC_SLCK|Scroll Lock|
|KC_PAUSE|KC_PAUS|Pause|
|KC_INSERT|KC_INS|Insert|
|KC_HOME||Home|
|KC_PGUP||PageUp|
|KC_DELETE|KC_DEL|Delete Forward|
|KC_END||End|
|KC_PGDOWN|KC_PGDN|PageDown|
|KC_RIGHT|KC_RGHT|RightArrow|
|KC_LEFT||LeftArrow|
|KC_DOWN||DownArrow|
|KC_UP||UpArrow|
|KC_APPLICATION|KC_APP|Application|
|KC_POWER||Power|
|KC_EXECUTE||Execute|
|KC_HELP||Help|
|KC_MENU||Menu|
|KC_SELECT||Select|
|KC_AGAIN||Again|
|KC_UNDO||Undo|
|KC_CUT||Cut|
|KC_COPY||Copy|
|KC_PASTE||Paste|
|KC_FIND||Find|
|KC_ALT_ERASE||Alternate Erase|
|KC_SYSREQ||SysReq/Attention|
|KC_CANCEL||Cancel|
|KC_CLEAR||Clear|
|KC_PRIOR||Prior|
|KC_RETURN||Return|
|KC_SEPARATOR||Separator|
|KC_OUT||Out|
|KC_OPER||Oper|
|KC_CLEAR_AGAIN||Clear/Again|
|KC_CRSEL||CrSel/Props|
|KC_EXSEL||ExSel|
|KC_SYSTEM_POWER|KC_PWR|System Power Down|
|KC_SYSTEM_SLEEP|KC_SLEP|System Sleep|
|KC_SYSTEM_WAKE|KC_WAKE|System Wake|
|KC_MAIL|KC_MAIL||
|KC_CALCULATOR|KC_CALC||
|KC_MY_COMPUTER|KC_MYCM||
|KC_WWW_SEARCH|KC_WSCH||
|KC_WWW_HOME|KC_WHOM||
|KC_WWW_BACK|KC_WBAK||
|KC_WWW_FORWARD|KC_WFWD||
|KC_WWW_STOP|KC_WSTP||
|KC_WWW_REFRESH|KC_WREF||
|KC_WWW_FAVORITES|KC_WFAV||
|Key |Aliases |Description |
|------------------|---------|------------------------------|
|`KC_PSCREEN` |`KC_PSCR`|Print Screen |
|`KC_SCROLLLOCK` |`KC_SLCK`|Scroll Lock |
|`KC_PAUSE` |`KC_PAUS`|Pause |
|`KC_INSERT` |`KC_INS` |Insert |
|`KC_HOME` | |Home |
|`KC_PGUP` | |Page Up |
|`KC_DELETE` |`KC_DEL` |Forward Delete |
|`KC_END` | |End |
|`KC_PGDOWN` |`KC_PGDN`|Page Down |
|`KC_RIGHT` |`KC_RGHT`|Right Arrow |
|`KC_LEFT` | |Left Arrow |
|`KC_DOWN` | |Down Arrow |
|`KC_UP` | |Up Arrow |
|`KC_APPLICATION` |`KC_APP` |Application (Windows Menu Key)|
|`KC_POWER` | |Power |
|`KC_EXECUTE` | |Execute |
|`KC_HELP` | |Help |
|`KC_MENU` | |Menu |
|`KC_SELECT` | |Select |
|`KC_AGAIN` | |Again |
|`KC_UNDO` | |Undo |
|`KC_CUT` | |Cut |
|`KC_COPY` | |Copy |
|`KC_PASTE` | |Paste |
|`KC_FIND` | |Find |
|`KC_ALT_ERASE` | |Alternate Erase |
|`KC_SYSREQ` | |SysReq/Attention |
|`KC_CANCEL` | |Cancel |
|`KC_CLEAR` | |Clear |
|`KC_PRIOR` | |Prior |
|`KC_RETURN` | |Return |
|`KC_SEPARATOR` | |Separator |
|`KC_OUT` | |Out |
|`KC_OPER` | |Oper |
|`KC_CLEAR_AGAIN` | |Clear/Again |
|`KC_CRSEL` | |CrSel/Props |
|`KC_EXSEL` | |ExSel |
## Media Keys
Windows and Mac use different key codes for next track and previous track. Make sure you choose the keycode that corresponds to your OS.
These keycodes are not part of the Keyboard/Keypad usage page. The `SYSTEM_` keycodes are found in the Generic Desktop page, and the rest are located in the Consumer page.
|Long Name|Short Name|Description|
|---------|----------|-----------|
|KC_STOP||Stop|
|KC__MUTE||Mute (macOS)|
|KC__VOLUP||Volume Up (macOS)|
|KC__VOLDOWN||Volume Down (macOS)|
|KC_AUDIO_MUTE|KC_MUTE|Mute (Windows/macOS/Linux)|
|KC_AUDIO_VOL_UP|KC_VOLU|Volume Up (Windows/macOS/Linux)|
|KC_AUDIO_VOL_DOWN|KC_VOLD|Volume Down (Windows/macOS/Linux)|
|KC_MEDIA_NEXT_TRACK|KC_MNXT|Next Track (Windows)|
|KC_MEDIA_PREV_TRACK|KC_MPRV|Previous Track (Windows)|
|KC_MEDIA_FAST_FORWARD|KC_MFFD|Next Track (macOS)|
|KC_MEDIA_REWIND|KC_MRWD|Previous Track (macOS)|
|KC_MEDIA_STOP|KC_MSTP||
|KC_MEDIA_PLAY_PAUSE|KC_MPLY||
|KC_MEDIA_SELECT|KC_MSEL||
Windows and macOS use different keycodes for "next track" and "previous track". Make sure you choose the keycode that corresponds to your OS.
## Numpad
|Key |Aliases |Description |
|-----------------------|---------|---------------------------------|
|`KC_SYSTEM_POWER` |`KC_PWR` |System Power Down |
|`KC_SYSTEM_SLEEP` |`KC_SLEP`|System Sleep |
|`KC_SYSTEM_WAKE` |`KC_WAKE`|System Wake |
|`KC_MAIL` |`KC_MAIL`| |
|`KC_CALCULATOR` |`KC_CALC`| |
|`KC_MY_COMPUTER` |`KC_MYCM`| |
|`KC_WWW_SEARCH` |`KC_WSCH`| |
|`KC_WWW_HOME` |`KC_WHOM`| |
|`KC_WWW_BACK` |`KC_WBAK`| |
|`KC_WWW_FORWARD` |`KC_WFWD`| |
|`KC_WWW_STOP` |`KC_WSTP`| |
|`KC_WWW_REFRESH` |`KC_WREF`| |
|`KC_STOP` | |Stop |
|`KC_WWW_FAVORITES` |`KC_WFAV`| |
|`KC__MUTE` | |Mute (macOS) |
|`KC__VOLUP` | |Volume Up (macOS) |
|`KC__VOLDOWN` | |Volume Down (macOS) |
|`KC_AUDIO_MUTE` |`KC_MUTE`|Mute (Windows/macOS/Linux) |
|`KC_AUDIO_VOL_UP` |`KC_VOLU`|Volume Up (Windows/macOS/Linux) |
|`KC_AUDIO_VOL_DOWN` |`KC_VOLD`|Volume Down (Windows/macOS/Linux)|
|`KC_MEDIA_NEXT_TRACK` |`KC_MNXT`|Next Track (Windows) |
|`KC_MEDIA_PREV_TRACK` |`KC_MPRV`|Previous Track (Windows) |
|`KC_MEDIA_FAST_FORWARD`|`KC_MFFD`|Next Track (macOS) |
|`KC_MEDIA_REWIND` |`KC_MRWD`|Previous Track (macOS) |
|`KC_MEDIA_STOP` |`KC_MSTP`|Stop Track |
|`KC_MEDIA_PLAY_PAUSE` |`KC_MPLY`|Play/Pause Track |
|`KC_MEDIA_SELECT` |`KC_MSEL`| |
|Long Name|Short Name|Description|
|---------|----------|-----------|
|KC_NUMLOCK|KC_NLCK|Keypad Num Lock and Clear|
|KC_KP_SLASH|KC_PSLS|Keypad /|
|KC_KP_ASTERISK|KC_PAST|Keypad *|
|KC_KP_MINUS|KC_PMNS|Keypad -|
|KC_KP_PLUS|KC_PPLS|Keypad +|
|KC_KP_ENTER|KC_PENT|Keypad ENTER|
|KC_KP_1|KC_P1|Keypad 1 and End|
|KC_KP_2|KC_P2|Keypad 2 and Down Arrow|
|KC_KP_3|KC_P3|Keypad 3 and PageDn|
|KC_KP_4|KC_P4|Keypad 4 and Left Arrow|
|KC_KP_5|KC_P5|Keypad 5|
|KC_KP_6|KC_P6|Keypad 6 and Right Arrow|
|KC_KP_7|KC_P7|Keypad 7 and Home|
|KC_KP_8|KC_P8|Keypad 8 and Up Arrow|
|KC_KP_9|KC_P9|Keypad 9 and PageUp|
|KC_KP_0|KC_P0|Keypad 0 and Insert|
|KC_KP_DOT|KC_PDOT|Keypad . and Delete|
|KC_KP_EQUAL|KC_PEQL|Keypad =|
|KC_KP_COMMA|KC_PCMM|Keypad Comma|
|KC_KP_EQUAL_AS400||Keypad Equal Sign|
## Number Pad
|Key |Aliases |Description |
|-------------------|---------|------------------------------|
|`KC_NUMLOCK` |`KC_NLCK`|Keypad Num Lock and Clear |
|`KC_KP_SLASH` |`KC_PSLS`|Keypad `/` |
|`KC_KP_ASTERISK` |`KC_PAST`|Keypad `*` |
|`KC_KP_MINUS` |`KC_PMNS`|Keypad `-` |
|`KC_KP_PLUS` |`KC_PPLS`|Keypad `+` |
|`KC_KP_ENTER` |`KC_PENT`|Keypad Enter |
|`KC_KP_1` |`KC_P1` |Keypad `1` and End |
|`KC_KP_2` |`KC_P2` |Keypad `2` and Down Arrow |
|`KC_KP_3` |`KC_P3` |Keypad `3` and Page Down |
|`KC_KP_4` |`KC_P4` |Keypad `4` and Left Arrow |
|`KC_KP_5` |`KC_P5` |Keypad `5` |
|`KC_KP_6` |`KC_P6` |Keypad `6` and Right Arrow |
|`KC_KP_7` |`KC_P7` |Keypad `7` and Home |
|`KC_KP_8` |`KC_P8` |Keypad `8` and Up Arrow |
|`KC_KP_9` |`KC_P9` |Keypad `9` and Page Up |
|`KC_KP_0` |`KC_P0` |Keypad `0` and Insert |
|`KC_KP_DOT` |`KC_PDOT`|Keypad `.` and Delete |
|`KC_KP_EQUAL` |`KC_PEQL`|Keypad `=` |
|`KC_KP_COMMA` |`KC_PCMM`|Keypad `,` |
|`KC_KP_EQUAL_AS400`| |Keypad `=` on AS/400 keyboards|
## Special Keys
|Long Name|Short Name|Description|
|---------|----------|-----------|
|KC_NO||Ignore this key. (NOOP) |
In addition to these, keycodes in the range of `0xA5-DF` are reserved for internal use by TMK.
## Mousekey
|Long Name|Short Name|Description|
|---------|----------|-----------|
|KC_MS_UP|KC_MS_U|Mouse Cursor Up|
|KC_MS_DOWN|KC_MS_D|Mouse Cursor Down|
|KC_MS_LEFT|KC_MS_L|Mouse Cursor Left|
|KC_MS_RIGHT|KC_MS_R|Mouse Cursor Right|
|KC_MS_BTN1|KC_BTN1|Mouse Button 1|
|KC_MS_BTN2|KC_BTN2|Mouse Button 2|
|KC_MS_BTN3|KC_BTN3|Mouse Button 3|
|KC_MS_BTN4|KC_BTN4|Mouse Button 4|
|KC_MS_BTN5|KC_BTN5|Mouse Button 5|
|KC_MS_WH_UP|KC_WH_U|Mouse Wheel Up|
|KC_MS_WH_DOWN|KC_WH_D|Mouse Wheel Down|
|KC_MS_WH_LEFT|KC_WH_L|Mouse Wheel Left|
|KC_MS_WH_RIGHT|KC_WH_R|Mouse Wheel Right|
|KC_MS_ACCEL0|KC_ACL0|Mouse Acceleration 0|
|KC_MS_ACCEL1|KC_ACL1|Mouse Acceleration 1|
|KC_MS_ACCEL2|KC_ACL2|Mouse Acceleration 2|
|Key |Aliases |Description |
|----------------|---------|---------------------------------------|
|`KC_NO` | |Ignore this key (NOOP) |
|`KC_TRANSPARENT`|`KC_TRNS`|Use the next lowest non-transparent key|

View File

@@ -1,31 +1,31 @@
# US ANSI Shifted symbols
# US ANSI Shifted Symbols
These keycodes correspond to characters that are "shifted" on a standard US ANSI keyboards. They do not have dedicated keycodes but are instead typed by holding down shift and then sending a keycode.
These keycodes correspond to characters that are "shifted" on a standard US ANSI keyboards. They do not have dedicated keycodes but are instead typed by holding down shift and then sending a keycode.
It's important to remember that all of these keycodes send a left shift - this may cause unintended actions if unaccounted for. The short code is preferred in most situations.
## US ANSI Shifted Keycodes
|Short Name|Long Name|Description|
|----------|---------|-----------|
|`KC_TILD`|`KC_TILDE`|tilde `~`|
|`KC_EXLM`|`KC_EXCLAIM`|exclamation mark `!`|
|`KC_AT`||at sign `@`|
|`KC_HASH`||hash sign `#`|
|`KC_DLR`|`KC_DOLLAR`|dollar sign `$`|
|`KC_PERC`|`KC_PERCENT`|percent sign `%`|
|`KC_CIRC`|`KC_CIRCUMFLEX`|circumflex `^`|
|`KC_AMPR`|`KC_AMPERSAND`|ampersand `&`|
|`KC_ASTR`|`KC_ASTERISK`|asterisk `*`|
|`KC_LPRN`|`KC_LEFT_PAREN`|left parenthesis `(`|
|`KC_RPRN`|`KC_RIGHT_PAREN`|right parenthesis `)`|
|`KC_UNDS`|`KC_UNDERSCORE`|underscore `_`|
|`KC_PLUS`||plus sign `+`|
|`KC_LCBR`|`KC_LEFT_CURLY_BRACE`|left curly brace `{`|
|`KC_RCBR`|`KC_RIGHT_CURLY_BRACE`|right curly brace `}`|
|`KC_LT`/`KC_LABK`|`KC_LEFT_ANGLE_BRACKET`|left angle bracket `<`|
|`KC_GT`/`KC_RABK`|`KC_RIGHT_ANGLE_BRACKET`|right angle bracket `>`|
|`KC_COLN`|`KC_COLON`|colon `:`|
|`KC_PIPE`||pipe `\|`|
|`KC_QUES`|`KC_QUESTION`|question mark `?`|
|`KC_DQT`/`KC_DQUO`|`KC_DOUBLE_QUOTE`|double quote `"`|
|Key |Aliases |Description |
|------------------------|------------------|-------------------|
|`KC_TILDE` |`KC_TILD` |`~` |
|`KC_EXCLAIM` |`KC_EXLM` |`!` |
|`KC_AT` | |`@` |
|`KC_HASH` | |`#` |
|`KC_DOLLAR` |`KC_DLR` |`$` |
|`KC_PERCENT` |`KC_PERC` |`%` |
|`KC_CIRCUMFLEX` |`KC_CIRC` |`^` |
|`KC_AMPERSAND` |`KC_AMPR` |`&` |
|`KC_ASTERISK` |`KC_ASTR` |`*` |
|`KC_LEFT_PAREN` |`KC_LPRN` |`(` |
|`KC_RIGHT_PAREN` |`KC_RPRN` |`)` |
|`KC_UNDERSCORE` |`KC_UNDS` |`_` |
|`KC_PLUS` | |`+` |
|`KC_LEFT_CURLY_BRACE` |`KC_LCBR` |`{` |
|`KC_RIGHT_CURLY_BRACE` |`KC_RCBR` |`}` |
|`KC_PIPE` | |<code>&#124;</code>|
|`KC_COLON` |`KC_COLN` |`:` |
|`KC_DOUBLE_QUOTE` |`KC_DQT`/`KC_DQUO`|`"` |
|`KC_LEFT_ANGLE_BRACKET` |`KC_LT`/`KC_LABK` |`<` |
|`KC_RIGHT_ANGLE_BRACKET`|`KC_GT`/`KC_RABK` |`>` |
|`KC_QUESTION` |`KC_QUES` |`?` |

View File

@@ -3,7 +3,7 @@
QMK keymaps are defined inside a C source file. The data structure is an array of arrays. The outer array is a list of layer arrays while the inner layer array is a list of keys. Most keyboards define a `KEYMAP()` macro to help you create this array of arrays.
## Keymap and layers
## Keymap and Layers
In QMK, **`const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS]`** holds multiple **layers** of keymap information in **16 bit** data holding the **action code**. You can define **32 layers** at most.
For trivial key definitions, the higher 8 bits of the **action code** are all 0 and the lower 8 bits holds the USB HID usage code generated by the key as **keycode**.
@@ -27,7 +27,7 @@ Respective layers can be validated simultaneously. Layers are indexed with 0 to
Sometimes, the action code stored in keymap may be referred as keycode in some documents due to the TMK history.
### Keymap layer status
### Keymap Layer Status
The state of the Keymap layer is determined by two 32 bit parameters:
* **`default_layer_state`** indicates a base keymap layer (0-31) which is always valid and to be referred (the default layer).
@@ -35,8 +35,8 @@ The state of the Keymap layer is determined by two 32 bit parameters:
Keymap layer '0' is usually `default_layer`, wither other layers initially off after booting up the firmware, although this can configured differently in `config.h`. It is useful to change `default_layer` when you completely switch a key layout, for example, if you want to switch to Colemak instead of Qwerty.
Initial state of Keymap Change base layout
----------------------- ------------------
Initial state of Keymap Change base layout
----------------------- ------------------
31 31
30 30
@@ -75,7 +75,7 @@ Note that ***higher layer has higher priority on stack of layers***, namely firm
You can place `KC_TRANS` on overlay layer changes just part of layout to fall back on lower or base layer.
Key with `KC_TRANS` (`KC_TRNS` and `_______` are the alias) doesn't has its own keycode and refers to lower valid layers for keycode, instead.
## Anatomy Of A `keymap.c`
## Anatomy of a `keymap.c`
For this example we will walk through an [older version of the default Clueboard 66% keymap](https://github.com/qmk/qmk_firmware/blob/ca01d94005f67ec4fa9528353481faa622d949ae/keyboards/clueboard/keymaps/default/keymap.c). You'll find it helpful to open that file in another browser window so you can look at everything in context.
@@ -98,7 +98,7 @@ At the top of the file you'll find this:
// Each layer gets a name for readability.
// The underscores don't mean anything - you can
// have a layer called STUFF or any other name.
// Layer names don't all need to be of the same
// Layer names don't all need to be of the same
// length, and you can also skip them entirely
// and just use numbers.
#define _BL 0
@@ -113,9 +113,9 @@ The main part of this file is the `keymaps[]` definition. This is where you list
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
After this you'll find a list of KEYMAP() macros. A KEYMAP() is simply a list of keys to define a single layer. Typically you'll have one or more "base layers" (such as QWERTY, Dvorak, or Colemak) and then you'll layer on top of that one or more "function" layers. Due to the way layers are processed you can't overlay a "lower" layer on top of a "higher" layer.
After this you'll find a list of KEYMAP() macros. A KEYMAP() is simply a list of keys to define a single layer. Typically you'll have one or more "base layers" (such as QWERTY, Dvorak, or Colemak) and then you'll layer on top of that one or more "function" layers. Due to the way layers are processed you can't overlay a "lower" layer on top of a "higher" layer.
`keymaps[][MATRIX_ROWS][MATRIX_COLS]` in QMK holds the 16 bit action code (sometimes referred as the quantum keycode) in it. For the keycode representing typical keys, its high byte is 0 and its low byte is the USB HID usage ID for keyboard.
`keymaps[][MATRIX_ROWS][MATRIX_COLS]` in QMK holds the 16 bit action code (sometimes referred as the quantum keycode) in it. For the keycode representing typical keys, its high byte is 0 and its low byte is the USB HID usage ID for keyboard.
> TMK from which QMK was forked uses `const uint8_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS]` instead and holds the 8 bit keycode. Some keycode values are reserved to induce execution of certain action codes via the `fn_actions[]` array.
@@ -153,11 +153,11 @@ Our function layer is, from a code point of view, no different from the base lay
Some interesting things to note:
* We have used our `_______` definition to turn `KC_TRNS` into `_______`. This makes it easier to spot the keys that have changed on this layer.
* While in this layer if you press one of the `_______` keys it will activate the key in the next lowest active layer.
* While in this layer if you press one of the `_______` keys it will activate the key in the next lowest active layer.
### Custom Functions
At the bottom of the file we've defined a single custom function. This function defines a key that sends `KC_ESC` when pressed without modifiers and `KC_GRAVE` when modifiers are held. There are a couple pieces that need to be in place for this to work, and we will go over both of them.
At the bottom of the file we've defined a single custom function. This function defines a key that sends `KC_ESC` when pressed without modifiers and `KC_GRAVE` when modifiers are held. There are a couple pieces that need to be in place for this to work, and we will go over both of them.
#### `fn_actions[]`

View File

@@ -42,7 +42,7 @@ The values at the top likely won't need to be changed, since most boards use the
OPT_DEFS += -DBOOTLOADER_SIZE=512
```
At the bottom of the file, you'll find lots of features to turn on and off - all of these options should be set with `?=` to allow for the keymap overrides. `?=` only assigns if the variable was previously undefined. For the full documenation of these features, see the [Makefile options](#makefile-options).
At the bottom of the file, you'll find lots of features to turn on and off - all of these options should be set with `?=` to allow for the keymap overrides. `?=` only assigns if the variable was previously undefined. For the full documentation of these features, see the [Makefile options](#makefile-options).
## `/keyboards/<keyboard>/readme.md`
@@ -54,7 +54,7 @@ This is where all of the custom logic for your keyboard goes - you may not need
## `/keyboards/<keyboard>/<keyboard>.h`
Here is where you can (optionally) define your `KEYMAP` function to remap your matrix into a more readable format. With ortholinear boards, this isn't always necessary, but it can help to accomodate the dead spots on your matrix, where there are keys that take up more than one space (2u, staggering, 6.25u, etc). The example shows the difference between the physical keys, and the matrix design:
Here is where you can (optionally) define your `KEYMAP` function to remap your matrix into a more readable format. With ortholinear boards, this isn't always necessary, but it can help to accommodate the dead spots on your matrix, where there are keys that take up more than one space (2u, staggering, 6.25u, etc). The example shows the difference between the physical keys, and the matrix design:
```
#define KEYMAP( \

View File

@@ -21,7 +21,7 @@ MCUSR MCU Status Register
SMCR Sleep Mode Control Register
SE Sleep Enable
SM2:0
SM2:0
#define set_sleep_mode(mode) \
#define SLEEP_MODE_IDLE (0)
#define SLEEP_MODE_ADC _BV(SM0)

View File

@@ -2,21 +2,21 @@
Quantum keycodes allow for easier customisation of your keymap than the basic ones provide, without having to define custom actions.
All keycodes within quantum are numbers between `0x0000` and `0xFFFF`. Within your `keymap.c` it may look like you have functions and other special cases, but ultimately the C preprocessor will translate those into a single 4 byte integer. QMK has reserved `0x0000` through `0x00FF` for standard keycodes. These are keycodes such as `KC_A`, `KC_1`, and `KC_LCTL`, which are basic keys defined in the USB HID specification.
All keycodes within quantum are numbers between `0x0000` and `0xFFFF`. Within your `keymap.c` it may look like you have functions and other special cases, but ultimately the C preprocessor will translate those into a single 4 byte integer. QMK has reserved `0x0000` through `0x00FF` for standard keycodes. These are keycodes such as `KC_A`, `KC_1`, and `KC_LCTL`, which are basic keys defined in the USB HID specification.
On this page we have documented keycodes between `0x00FF` and `0xFFFF` which are used to implement advanced quantum features. If you define your own custom keycodes they will be put into this range as well.
## QMK keycodes
## QMK Keycodes
|Name|Description|
|----|-----------|
|`RESET`|Put the keyboard into DFU mode for flashing|
|`DEBUG`|Toggles debug mode|
|`KC_GESC`/`GRAVE_ESC`|Acts as escape when pressed normally but when pressed with Shift or GUI will send a ```|
|`KC_LSPO`|Left shift when held, open paranthesis when tapped|
|`KC_RSPC`|Right shift when held, close paranthesis when tapped|
|`KC_LEAD`|The [leader key](feature_leader_key.md)|
|`KC_LOCK`|The [lock key](feature_key_lock.md)|
|`FUNC(n)`/`F(n)`|Call `fn_action(n)` (deprecated)|
|`M(n)`|to call macro n|
|`MACROTAP(n)`|to macro-tap n idk FIXME|
|Key |Aliases |Description |
|-------------|-----------|---------------------------------------------------------------------|
|`RESET` | |Put the keyboard into DFU mode for flashing |
|`DEBUG` | |Toggle debug mode |
|`KC_GESC` |`GRAVE_ESC`|Escape when tapped, <code>&#96;</code> when pressed with Shift or GUI|
|`KC_LSPO` | |Left Shift when held, `(` when tapped |
|`KC_RSPC` | |Right Shift when held, `)` when tapped |
|`KC_LEAD` | |The [Leader key](feature_leader_key.md) |
|`KC_LOCK` | |The [Lock key](feature_key_lock.md) |
|`FUNC(n)` |`F(n)` |Call `fn_action(n)` (deprecated) |
|`M(n)` | |Call macro `n` |
|`MACROTAP(n)`| |Macro-tap `n` idk FIXME |

View File

@@ -94,11 +94,11 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
}
```
Notice how all of these arguments match up with the first half of the `KEYMAP()` macro from the last section? This is how we take a keycode and map it to our Matrix Scan from earlier.
Notice how all of these arguments match up with the first half of the `KEYMAP()` macro from the last section? This is how we take a keycode and map it to our Matrix Scan from earlier.
##### State Change Detection
The matrix scanning described above tells us the state of the matrix at a given moment, but your computer only wants to know about changes, it doesn't care about the current state. QMK stores the results from the last matrix scan and compares the results from this matrix to determine when a key has been pressed or released.
The matrix scanning described above tells us the state of the matrix at a given moment, but your computer only wants to know about changes, it doesn't care about the current state. QMK stores the results from the last matrix scan and compares the results from this matrix to determine when a key has been pressed or released.
Let's look at an example. We'll hop into the middle of a keyboard scanning loop to find that our previous scan looks like this:
@@ -150,7 +150,7 @@ The `process_record()` function itself is deceptively simple, but hidden within
* [`bool process_auto_shift(uint16_t keycode, keyrecord_t *record)`](https://github.com/qmk/qmk_firmware/blob/master/quantum/process_keycode/process_auto_shift.c#L47)
* [`bool process_unicode_map(uint16_t keycode, keyrecord_t *record)`](https://github.com/qmk/qmk_firmware/blob/master/quantum/process_keycode/process_unicodemap.c#L47)
* [Identify and process quantum specific keycodes](https://github.com/qmk/qmk_firmware/blob/master/quantum/quantum.c#L211)
At any step during this chain of events a function (such as `process_record_kb()`) can `return false` to halt all further processing.
<!--

View File

@@ -18,7 +18,7 @@ Note that Google Test and therefore any test has to be written in C++, even if t
One thing to remember, is that you have to append `extern "C"` around all of your C file includes.
## Adding tests for new or existing features
## Adding Tests for New or Existing Features
If you want to unit test some feature, then take a look at the existing serial_link tests, in the `quantum/serial_link/tests folder`, and follow the steps below to create a similar structure.
@@ -34,25 +34,25 @@ If you want to unit test some feature, then take a look at the existing serial_l
Note how there's several different tests, each mocking out a separate part. Also note that each of them only compiles the very minimum that's needed for the tests. It's recommend that you try to do the same. For a relevant video check out [Matt Hargett "Advanced Unit Testing in C & C++](https://www.youtube.com/watch?v=Wmy6g-aVgZI)
## Running the tests
## Running the Tests
To run all the tests in the codebase, type `make test`. You can also run test matching a substring by typing `make test:matchingsubstring` Note that the tests are always compiled with the native compiler of your platform, so they are also run like any other program on your computer.
## Debugging the tests
## Debugging the Tests
If there are problems with the tests, you can find the executable in the `./build/test` folder. You should be able to run those with GDB or a similar debugger.
## Full Integration tests
## Full Integration Tests
It's not yet possible to do a full integration test, where you would compile the whole firmware and define a keymap that you are going to test. However there are plans for doing that, because writing tests that way would probably be easier, at least for people that are not used to unit testing.
In that model you would emulate the input, and expect a certain output from the emulated keyboard.
# Tracing variables
# Tracing Variables
Sometimes you might wonder why a variable gets changed and where, and this can be quite tricky to track down without having a debugger. It's of course possible to manually add print statements to track it, but you can also enable the variable trace feature. This works for both for variables that are changed by the code, and when the variable is changed by some memory corruption.
To take the feature into use add `VARIABLE_TRACE=x` to the end of you make command. `x` represents the number of variables you want to trace, which is usually 1.
To take the feature into use add `VARIABLE_TRACE=x` to the end of you make command. `x` represents the number of variables you want to trace, which is usually 1.
Then at a suitable place in the code, call `ADD_TRACED_VARIABLE`, to begin the tracing. For example to trace all the layer changes, you can do this
```c
@@ -65,4 +65,4 @@ This will add a traced variable named "layer" (the name is just for your informa
In order to actually detect changes to the variables you should call `VERIFY_TRACED_VARIABLES` around the code that you think that modifies the variable. If a variable is modified it will tell you between which two `VERIFY_TRACED_VARIABLES` calls the modification happened. You can then add more calls to track it down further. I don't recommend spamming the codebase with calls. It's better to start with a few, and then keep adding them in a binary search fashion. You can also delete the ones you don't need, as each call need to store the file name and line number in the ROM, so you can run out of memory if you add too many calls.
Also remember to delete all the tracing code once you have found the bug, as you wouldn't want to create a pull request with tracing code.
Also remember to delete all the tracing code once you have found the bug, as you wouldn't want to create a pull request with tracing code.

View File

@@ -47,11 +47,11 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
}
/* Here is the above keymap filled with KC_TRNS. It's a useful starting point when defining layers.
KEYMAP( \
______, ______, ______, ______, ______, ______, ______, ______, ______, ______, ______, ______, ______, ______, \
______, ______, ______, ______, ______, ______, ______, ______, ______, ______, ______, ______, ______, ______, \
______, ______, ______, ______, ______, ______, ______, ______, ______, ______, ______, ______, ______, \
______, ______, ______, ______, ______, ______, ______, ______, ______, ______, ______, ______, ______,\
______, ______, ______, ______, ______, ______, ______, ______, ______, ______, ______ \
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, \
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, \
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, \
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______,\
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______ \
)
*/

View File

@@ -17,7 +17,7 @@
#ifndef CONFIG_USER_H
#define CONFIG_USER_H
#include "../../config.h"
#include "config_common.h"
// place overrides here
#define GRAVE_ESC_CTRL_OVERRIDE

View File

@@ -15,7 +15,9 @@
*/
#include "bananasplit.h"
#define ______ KC_TRNS
enum custom_keycodes {
WIN_SWITCH_LAYOUT = SAFE_RANGE
};
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/*
@@ -35,7 +37,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
KC_GESC, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS, KC_EQL, KC_BSPC, \
KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_LBRC, KC_RBRC, KC_BSLS, \
MO(1), KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, KC_ENT, \
KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_RSFT, M(0),\
KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_RSFT, WIN_SWITCH_LAYOUT,\
KC_LCTL, KC_LGUI, KC_LALT, KC_SPC, MO(1), KC_SPC, KC_RALT, KC_RGUI, KC_NO, KC_APP, KC_RCTL \
),
/*
@@ -52,11 +54,11 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
-------------------------------------------------------------------------------------------
*/
[1] = KEYMAP( \
______, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, ______, \
KC_CAPS, KC_MPRV, KC_VOLU, KC_MNXT, KC_PGUP, KC_INS, KC_HOME, LCTL(KC_LEFT), LCTL(KC_RGHT), KC_END, ______, ______, ______, KC_PSCR, \
______, KC_MUTE, KC_VOLD, KC_MPLY, KC_PGDN, KC_DEL, KC_LEFT, KC_DOWN, KC_UP, KC_RGHT, ______, ______, ______, \
______, ______, ______, ______, ______, ______, LCTL(KC_BSPC), LCTL(KC_DEL), ______, ______, ______, ______, ______, \
______, ______, ______, ______, ______, ______, ______, ______, ______, ______, RESET \
_______, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, _______, \
KC_CAPS, KC_MPRV, KC_VOLU, KC_MNXT, KC_PGUP, KC_INS, KC_HOME, LCTL(KC_LEFT), LCTL(KC_RGHT), KC_END, _______, _______, _______, KC_PSCR, \
_______, KC_MUTE, KC_VOLD, KC_MPLY, KC_PGDN, KC_DEL, KC_LEFT, KC_DOWN, KC_UP, KC_RGHT, _______, _______, _______, \
_______, _______, _______, _______, _______,_______, LCTL(KC_BSPC), LCTL(KC_DEL), _______, _______, _______, _______, _______, \
_______, _______, _______, _______, _______,_______, _______, _______, _______, _______, RESET \
),
};
@@ -64,21 +66,6 @@ const uint16_t PROGMEM fn_actions[] = {
};
const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt) {
switch(id) {
case 0:
// Sends Alt+Shift on both key down and key up.
// Fesigned to switch between two keyboard layouts on Windows using a locking switch.
// Does nothing if right shift is pressed for easier resync.
if (!(get_mods() & MOD_BIT(KC_RSFT)))
return MACRO(D(LALT), T(LSFT), U(LALT), END);
else
return MACRO_NONE;
}
return MACRO_NONE;
};
void matrix_init_user(void) {
}
@@ -88,6 +75,19 @@ void matrix_scan_user(void) {
}
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case WIN_SWITCH_LAYOUT: {
// Sends Alt+Shift on both key down and key up.
// Designed to switch between two keyboard layouts on Windows using a locking switch.
// Does nothing if right shift is pressed for easy resync.
if (!(get_mods() & MOD_BIT(KC_RSFT))) {
SEND_STRING(SS_DOWN(X_LALT)SS_TAP(X_LSHIFT)SS_UP(X_LALT));
return false;
}
else
return false;
}
}
return true;
}

View File

@@ -1,5 +1,4 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.

View File

@@ -1,9 +0,0 @@
MOUSEKEY_ENABLE = yes
EXTRAKEY_ENABLE = yes
MIDI_ENABLE = yes
# if MIDI_ENABLE is set to yes, then CONSOLE_ENABLE has to be disabled, because of the firmware size
CONSOLE_ENABLE = false
COMMAND_ENABLE = no

View File

@@ -138,7 +138,7 @@ enum layer_id {
void clueboard_set_led(uint8_t id, uint8_t val) {
switch (id) {
case LAYER_BASE:
rgblight_sethsv_noeeprom(0, 0, val);
rgblight_sethsv_noeeprom(190, 255, val);
break;
case LAYER_FUNCTION:
rgblight_sethsv_noeeprom(46, 255, val);

View File

@@ -41,7 +41,7 @@ Here one can control the behavior of the RGB underlight.
The different layers are signalled throug setting of the underlight:
- Base layer: White
- Base layer: Light Blue
- Function layer: Yellow
- Media layer: Green
- Mouse layer: Blue

View File

@@ -5,5 +5,5 @@ EXTRAKEY_ENABLE = yes
MIDI_ENABLE = yes
# if MIDI_ENABLE is set to yes, then CONSOLE_ENABLE has to be disabled, because of the firmware size
CONSOLE_ENABLE = false
CONSOLE_ENABLE = no
COMMAND_ENABLE = no

View File

@@ -0,0 +1,62 @@
#include "dz60.h"
#define MODS_CTRL_MASK (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT))
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
KEYMAP(
KC_ESC, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS, KC_EQL, KC_NO, KC_BSPC,
KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_LBRC, KC_RBRC, KC_BSLS,
MO(1), KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, KC_ENT,
KC_LSFT, KC_NUBS, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_RSFT,
KC_LCTL, KC_LCTL, KC_LGUI, KC_LALT, KC_SPC, KC_SPC, KC_SPC, KC_NO, KC_RALT, KC_NO, MO(2), KC_RCTL),
KEYMAP(
KC_GRV, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, KC_NO, KC_DEL,
KC_NO, RGB_TOG, RGB_MOD, RGB_HUI, RGB_HUD, RGB_SAI, RGB_SAD, RGB_VAI, RGB_VAD, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO,
KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO,
KC_PGUP, KC_NO, KC_NO, KC_NO, BL_DEC, BL_TOGG, BL_INC, BL_STEP, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO,
KC_PGDOWN, KC_LGUI, KC_LGUI, KC_NO, KC_NO, KC_NO, KC_RALT, KC_RGUI, KC_NO, KC_NO, KC_RCTL),
KEYMAP(
KC_GRV, KC_MPRV, KC_MPLY, KC_MNXT, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_DEL,
KC_NO, KC_NO, KC_UP, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO,
KC_NO, KC_LEFT, KC_DOWN, KC_RIGHT, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO,
KC_LSFT, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO,
KC_LCTL, KC_LGUI, KC_LALT, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO),
};
enum function_id {
SHIFT_ESC,
};
const uint16_t PROGMEM fn_actions[] = {
[0] = ACTION_FUNCTION(SHIFT_ESC),
};
void action_function(keyrecord_t *record, uint8_t id, uint8_t opt) {
static uint8_t shift_esc_shift_mask;
switch (id) {
case SHIFT_ESC:
shift_esc_shift_mask = get_mods()&MODS_CTRL_MASK;
if (record->event.pressed) {
if (shift_esc_shift_mask) {
add_key(KC_GRV);
send_keyboard_report();
} else {
add_key(KC_ESC);
send_keyboard_report();
}
} else {
if (shift_esc_shift_mask) {
del_key(KC_GRV);
send_keyboard_report();
} else {
del_key(KC_ESC);
send_keyboard_report();
}
}
break;
}
}

View File

@@ -0,0 +1,25 @@
Overview
========
This is my personal Ergodox EZ configuration, and my daily driver.
Most of the code resides in my userspace, rather than here, as I have multiple keyboards.
How to build
------------
make ergodox_ez:drashna:teensy
Layers
------
* QWERTY/DVORAK/COLEMAK/WORKMAN: basic layout, default set like the OLKB boards. Default is set and persists on power cycle.
* SYMB: F keys across the top, symbols on the left and numpad on the right.
* GAMEPAD: This is the QWERTY layout shifted to the right for FPS type games. Destiny and Overwatch are the primary games for this.
* DIABLO: This contains a Diablo 3 layout, that requires much less reaching or shifting. If Tap Dance is enabled, then it has a "spam" feature. See Userspace for details.
* MOUSE: mouse navigation
All layers have RGB specific indicators, so you can see what layer you're on by the underglow.
Ergodox Specific Code
---------------------
Aside from my userspace code, this includes LED indications for Shift (Green LED), Ctrl (Red LED), and Alt (Blue LED).

View File

@@ -71,7 +71,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
KC_EQUAL, KC_1, KC_2, KC_3, KC_4, KC_5, TG(_MOUS),
KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, TG(_DIABLO),
KC_BSPACE, KC_A, KC_S, KC_D, KC_F, KC_G,
KC_LSHIFT, LCTL_T(KC_Z),KC_X, KC_C, KC_V, KC_B, TG(_OVERWATCH),
KC_LSHIFT, LCTL_T(KC_Z),KC_X, KC_C, KC_V, KC_B, TG(_GAMEPAD),
LT(_SYMB,KC_GRAVE),KC_QUOTE, KC_LGUI, KC_LBRACKET,KC_RBRACKET,
ALT_T(KC_APPLICATION), KC_LGUI,
@@ -81,7 +81,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
TG(_MOUS), KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINUS,
TG(_DIABLO), KC_Y, KC_U, KC_I, KC_O, KC_P, KC_BSLASH,
KC_H, KC_J, KC_K, KC_L, KC_SCOLON, GUI_T(KC_QUOTE),
TG(_OVERWATCH), KC_N, KC_M, KC_COMMA, KC_DOT, RCTL_T(KC_SLASH),KC_RSHIFT,
TG(_GAMEPAD), KC_N, KC_M, KC_COMMA, KC_DOT, RCTL_T(KC_SLASH),KC_RSHIFT,
KC_LEFT, KC_DOWN, KC_UP, KC_RIGHT, TT(_SYMB),
KC_RGUI, CTL_T(KC_ESCAPE),
KC_PGUP,
@@ -115,7 +115,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
KC_EQL, KC_1, KC_2, KC_3, KC_4, KC_5, TG(_MOUS),
KC_TAB, KC_Q, KC_W, KC_F, KC_P, KC_G, TG(_DIABLO),
KC_BSPC, KC_A, KC_R, KC_S, KC_T, KC_D,
KC_LSFT, LCTL_T(KC_Z), KC_X, KC_C, KC_V, KC_B, TG(_OVERWATCH),
KC_LSFT, LCTL_T(KC_Z), KC_X, KC_C, KC_V, KC_B, TG(_GAMEPAD),
LT(_SYMB,KC_GRV),KC_QUOT, KC_LGUI, KC_LBRACKET,KC_RBRACKET,
ALT_T(KC_APP), KC_LGUI,
KC_HOME,
@@ -124,7 +124,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
TG(_MOUS), KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS,
TG(_DIABLO), KC_J, KC_L, KC_U, KC_Y, KC_SCLN, KC_BSLS,
KC_H, KC_N, KC_E, KC_I, KC_O, GUI_T(KC_QUOTE),
TG(_OVERWATCH),KC_K, KC_M, KC_COMM,KC_DOT, RCTL_T(KC_SLASH), KC_RSHIFT,
TG(_GAMEPAD),KC_K, KC_M, KC_COMM,KC_DOT, RCTL_T(KC_SLASH), KC_RSHIFT,
KC_LEFT, KC_DOWN, KC_UP, KC_RIGHT, TT(_SYMB),
KC_RGUI, CTL_T(KC_ESC),
KC_PGUP,
@@ -158,7 +158,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
KC_EQL, KC_1, KC_2, KC_3, KC_4, KC_5, TG(_MOUS),
KC_TAB, KC_QUOT, KC_COMM, KC_DOT, KC_P, KC_Y, TG(_DIABLO),
KC_BSPC, KC_A, KC_O, KC_E, KC_U, KC_I,
KC_LSFT, LCTL_T(KC_SCLN), KC_Q, KC_J, KC_K, KC_X, TG(_OVERWATCH),
KC_LSFT, LCTL_T(KC_SCLN), KC_Q, KC_J, KC_K, KC_X, TG(_GAMEPAD),
LT(_SYMB,KC_GRV),KC_QUOT, KC_LGUI, KC_LBRACKET, KC_RBRACKET,
ALT_T(KC_APP), KC_LEAD,
KC_HOME,
@@ -167,7 +167,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
TG(_MOUS), KC_6, KC_7, KC_8, KC_9, KC_0, KC_BSLS,
TG(_DIABLO), KC_F, KC_G, KC_C, KC_R, KC_L, KC_SLSH,
KC_D, KC_H, KC_T, KC_N, KC_S, KC_MINS,
TG(_OVERWATCH),KC_B, KC_M, KC_W, KC_V, RCTL_T(KC_Z), KC_RSHIFT,
TG(_GAMEPAD),KC_B, KC_M, KC_W, KC_V, RCTL_T(KC_Z), KC_RSHIFT,
KC_LEFT,KC_DOWN,KC_UP, KC_RIGHT, TT(_SYMB),
KC_LALT, CTL_T(KC_ESC),
KC_PGUP,
@@ -201,7 +201,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
KC_EQL, KC_1, KC_2, KC_3, KC_4, KC_5, TG(_MOUS),
KC_TAB, KC_Q, KC_D, KC_R, KC_W, KC_B, TG(_DIABLO),
KC_BSPC, KC_A, KC_S, KC_H, KC_T, KC_G,
KC_LSFT, LCTL_T(KC_Z), KC_X, KC_M, KC_C, KC_V, TG(_OVERWATCH),
KC_LSFT, LCTL_T(KC_Z), KC_X, KC_M, KC_C, KC_V, TG(_GAMEPAD),
LT(_SYMB,KC_GRV),KC_QUOT, KC_LGUI, KC_LBRACKET,KC_RBRACKET,
ALT_T(KC_APP), KC_LEAD,
KC_HOME,
@@ -210,7 +210,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
TG(_MOUS), KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS,
TG(_DIABLO), KC_J, KC_F, KC_U, KC_P, KC_SCLN, KC_BSLS,
KC_Y, KC_N, KC_E, KC_O, KC_I, KC_QUOTE,
TG(_OVERWATCH),KC_K, KC_L, KC_COMM,KC_DOT, RCTL_T(KC_SLASH), KC_RSHIFT,
TG(_GAMEPAD),KC_K, KC_L, KC_COMM,KC_DOT, RCTL_T(KC_SLASH), KC_RSHIFT,
KC_LEFT, KC_DOWN, KC_UP, KC_RIGHT, TT(_SYMB),
KC_LALT, CTL_T(KC_ESC),
KC_PGUP,
@@ -279,7 +279,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
* | | | H | | | | |
* `--------------------' `--------------------'
*/
[_OVERWATCH] = LAYOUT_ergodox(
[_GAMEPAD] = LAYOUT_ergodox(
KC_ESCAPE, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_F1, KC_K, KC_Q, KC_W, KC_E, KC_R, KC_T,
KC_TAB, KC_G, KC_A, KC_S, KC_D, KC_F,
@@ -291,9 +291,9 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
KC_TRNS, KC_F9, KC_F10, KC_F11, KC_F12, KC_NO, KC_NO,
KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO,
KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO,
TG(_OVERWATCH), KC_N, KC_M, KC_NO, KC_NO, KC_NO, KC_NO,
KC_NO, KC_NO, KC_NO, KC_NO, KC_NO,
KC_I, KC_O, KC_NO, KC_NO, KC_NO, KC_NO,
TG(_GAMEPAD), KC_N, KC_M, KC_NO, KC_NO, KC_NO, KC_NO,
KC_LEFT, KC_DOWN, KC_UP, KC_RIGHT, KC_NO,
KC_NO, KC_NO,
KC_NO,
KC_PGDOWN, KC_DELETE, KC_ENTER

View File

@@ -0,0 +1,10 @@
#ifndef CONFIG_USER_H
#define CONFIG_USER_H
#endif
#define NORMAL_MODE 0
#define INSERT_MODE 1
#define SYMB 2
#define MOUSE 3
#include "../../config.h"

View File

@@ -0,0 +1,384 @@
#include QMK_KEYBOARD_H
#include "quantum_keycodes.h"
#include "action_layer.h"
#include "version.h"
#include "vim.h"
#define VERSION_STRING QMK_KEYBOARD "/" QMK_KEYMAP " @ " QMK_VERSION
#define _______ KC_TRNS
#define X_____X KC_TRNS
#define KC_ATM LGUI(LSFT(KC_P))
#define KC_ATP LGUI(LCTL(KC_P))
#define TO_NORM TO(NORMAL_MODE)
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/* Normal mode
*
* ,--------------------------------------------------. ,--------------------------------------------------.
* | | | | | | | | | | | | | | | |
* |--------+------+------+------+------+-------------| |------+------+------+------+------+------+--------|
* | TAB | | WORD | END | | | | | | YANK | UNDO | | OPEN | PUT | |
* |--------+------+------+------+------+------| | | |------+------+------+------+------+--------|
* | ⎋ | | | DEL | | |------| |------| ← | ↓ | ↑ | → | | ⎋ |
* |--------+------+------+------+------+------| | | |------+------+------+------+------+--------|
* | SHIFT | | | |VISUAL| BACK | | | | | | | | | SHIFT |
* `--------+------+------+------+------+-------------' `-------------+------+------+------+------+--------'
* | | | | | | | | | | | |
* `----------------------------------' `----------------------------------'
* ,-------------. ,-------------.
* | | | | | |
* ,------|------|------| |------+------+------.
* | | | | | | | |
* |SPACE |DELETE|------| |------|ENTER |BACKSP|
* | | | | | | | |
* `--------------------' `--------------------'
*/
[NORMAL_MODE] = KEYMAP(
// Layer 2 Left Hand
X_____X,X_____X,X_____X,X_____X,X_____X,X_____X,X_____X,
KC_TAB ,X_____X,VIM_W, VIM_E ,X_____X,X_____X,X_____X,
X_____X,VIM_A ,VIM_S ,VIM_D ,X_____X,X_____X,
KC_LSFT,X_____X,VIM_X ,VIM_C ,VIM_V ,VIM_B ,X_____X,
KC_LCTL,KC_LALT,X_____X,X_____X,X_____X,
KC_HOME,KC_END ,
TO(SYMB),
GUI_T(KC_SPC), KC_ESC ,_______,
// Layer 2 Right Hand
X_____X,X_____X,X_____X,X_____X,X_____X,X_____X,X_____X,
X_____X,VIM_Y ,VIM_U ,VIM_I ,VIM_O ,VIM_P ,X_____X,
VIM_H ,VIM_J ,VIM_K ,VIM_L ,X_____X,X_____X,
X_____X,X_____X,X_____X,X_____X,X_____X,X_____X,KC_LSFT,
X_____X,X_____X,X_____X,KC_RALT,KC_RCTL,
KC_PGUP, KC_PGDN,
TO(SYMB),
KC_DEL , KC_ENT, GUI_T(KC_BSPC)
),
/* Insert mode
*
* ,--------------------------------------------------. ,--------------------------------------------------.
* | NORMAL | 1 | 2 | 3 | 4 | 5 | ⇧⌘P | | PROJ | 6 | 7 | 8 | 9 | 0 | - |
* |--------+------+------+------+------+-------------| |------+------+------+------+------+------+--------|
* | ⇥ | Q | W | E | R | T | ` | | - | Y | U | I | O | P | \ |
* |--------+------+------+------+------+------| | | |------+------+------+------+------+--------|
* | ⎋ | A | S | D | F | G |------| |------| H | J | K | L | ; | ' |
* |--------+------+------+------+------+------| = | | + |------+------+------+------+------+--------|
* | L⇧ | Z | X | C | V | B | | | | N | M | , | . | / | R⇧ |
* `--------+------+------+------+------+-------------' `-------------+------+------+------+------+--------'
* | ⌃ | ⌥ | ( | [ | { | | } | ] | ) | ⌥ | ⌃ |
* `----------------------------------' `----------------------------------'
* ,-------------. ,-------------.
* | HOME | END | | PGDN | PGUP |
* ,------|------|------| |------+------+------.
* |SPACE | | | | | | BSPC |
* | |NORMAL|------| |------| ENTER| |
* | ⌘ | | | | | | ⌘ |
* `--------------------' `--------------------'
*/
[INSERT_MODE] = KEYMAP(
// Left Hand
NOR_MOD,KC_1, KC_2, KC_3, KC_4, KC_5, KC_ATM,
KC_TAB ,KC_Q, KC_W, KC_E, KC_R, KC_T, KC_GRV,
KC_ESC ,KC_A, KC_S, KC_D, KC_F, KC_G,
KC_LSFT,KC_Z, KC_X, KC_C, KC_V, KC_B, KC_EQL,
KC_LCTL,KC_LALT,KC_LPRN,KC_LBRC, KC_LCBR,
KC_HOME,KC_END ,
TO(SYMB),
GUI_T(KC_SPC),KC_ESC ,TO_NORM,
// Right Hand
KC_ATP , KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS,
KC_MINS, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_BSLS,
KC_H, KC_J, KC_K, KC_L, KC_SCLN,KC_QUOT,
KC_PLUS, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH,KC_RSFT,
KC_RCBR,KC_RBRC, KC_RPRN,KC_RALT,KC_RCTL,
KC_PGUP, KC_PGDN,
TO(SYMB),
MO(MOUSE) , KC_ENT, GUI_T(KC_BSPC)
),
[SYMB] = KEYMAP(
// Left Hand
NOR_MOD,KC_1, KC_2, KC_3, KC_4, KC_5, KC_ATM,
KC_TAB ,KC_Q, KC_W, KC_E, KC_R, KC_T, KC_GRV,
_______,KC_A, KC_S, KC_D, KC_F, KC_G,
KC_LSFT,KC_Z, KC_X, KC_C, KC_V, KC_B, KC_EQL,
KC_LCTL,KC_LALT,KC_LPRN,KC_LBRC, KC_LCBR,
_______,_______,
_______,
_______,_______,TO_NORM,
// Right Hand
KC_ATP , KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS,
KC_MINS, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_BSLS,
KC_H, KC_J, KC_K, KC_L, KC_SCLN,KC_QUOT,
KC_PLUS, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH,KC_RSFT,
KC_RCBR,KC_RBRC, KC_RPRN,KC_RALT,KC_RCTL,
_______,_______,
_______,
_______,_______,_______
),
[MOUSE] = KEYMAP(
// Left Hand
_______,_______,_______,_______,_______,_______,_______,
_______,_______,_______,_______,_______,_______,_______,
_______,_______,_______,_______,_______,_______,
_______,_______,_______,_______,_______,_______,_______,
_______,_______,_______,_______,_______,
_______,_______,
_______,
_______,_______,_______,
// Right Hand
_______,_______,_______,_______,_______,_______,_______,
_______,_______,KC_BTN1,KC_BTN3,KC_BTN2,_______,_______,
KC_MS_L,KC_MS_D,KC_MS_U,KC_MS_R,_______,_______,
_______,_______,_______,_______,_______,_______,_______,
_______,_______,_______,_______,_______,
_______,_______,
_______,
_______,_______,_______
),
};
const uint16_t PROGMEM fn_actions[] = {
[1] = ACTION_LAYER_TAP_TOGGLE(1)
};
const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt) {
switch(id) {
case 0:
if (record->event.pressed) { SEND_STRING (VERSION_STRING); }
break;
}
return MACRO_NONE;
};
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
bool SHIFTED = (keyboard_report->mods & MOD_BIT(KC_LSFT)) |
(keyboard_report->mods & MOD_BIT(KC_RSFT));
switch (keycode) {
case VIM_A:
if (record->event.pressed) { SHIFTED ? VIM_APPEND_LINE() : VIM_APPEND(); }
return false;
case VIM_B:
if (record->event.pressed) {
switch(VIM_QUEUE) {
case KC_NO: VIM_BACK(); break;
case VIM_C: VIM_CHANGE_BACK(); break;
case VIM_D: VIM_DELETE_BACK(); break;
case VIM_V: VIM_VISUAL_BACK(); break;
}
}
return false;
case VIM_C:
if (record->event.pressed) {
switch(VIM_QUEUE) {
case KC_NO: SHIFTED ? VIM_CHANGE_LINE() : VIM_LEADER(VIM_C); break;
case VIM_C: VIM_CHANGE_WHOLE_LINE(); break;
}
}
return false;
case VIM_D:
if (record->event.pressed) {
switch(VIM_QUEUE) {
case KC_NO: SHIFTED ? VIM_DELETE_LINE() : VIM_LEADER(VIM_D); break;
case VIM_D: VIM_DELETE_WHOLE_LINE(); break;
}
}
return false;
case VIM_E:
if (record->event.pressed) {
switch (VIM_QUEUE) {
case KC_NO: VIM_END(); break;
case VIM_C: VIM_CHANGE_END(); break;
case VIM_D: VIM_DELETE_END(); break;
case VIM_V: VIM_VISUAL_END(); break;
}
}
return false;
case VIM_H:
if (record->event.pressed) {
switch (VIM_QUEUE) {
case KC_NO: VIM_LEFT(); break;
case VIM_C: VIM_CHANGE_LEFT(); break;
case VIM_D: VIM_DELETE_LEFT(); break;
case VIM_V: VIM_VISUAL_LEFT(); break;
}
}
return false;
case VIM_I:
if (record->event.pressed) {
switch (VIM_QUEUE) {
case KC_NO: layer_on(INSERT_MODE); break;
case VIM_C: VIM_LEADER(VIM_CI); break;
case VIM_D: VIM_LEADER(VIM_DI); break;
case VIM_V: VIM_LEADER(VIM_VI); break;
}
}
return false;
case VIM_J:
if (record->event.pressed) {
switch (VIM_QUEUE) {
case KC_NO: SHIFTED ? VIM_JOIN() : VIM_DOWN(); break;
case VIM_C: VIM_CHANGE_DOWN(); break;
case VIM_D: VIM_DELETE_DOWN(); break;
case VIM_V: VIM_VISUAL_DOWN(); break;
}
}
return false;
case VIM_K:
if (record->event.pressed) {
switch (VIM_QUEUE) {
case KC_NO: VIM_UP(); break;
case VIM_C: VIM_CHANGE_UP(); break;
case VIM_D: VIM_DELETE_UP(); break;
case VIM_V: VIM_VISUAL_UP(); break;
}
}
return false;
case VIM_L:
if (record->event.pressed) {
switch (VIM_QUEUE) {
case KC_NO: VIM_RIGHT(); break;
case VIM_C: VIM_CHANGE_RIGHT(); break;
case VIM_D: VIM_DELETE_RIGHT(); break;
case VIM_V: VIM_VISUAL_RIGHT(); break;
}
}
return false;
case VIM_O:
if (record->event.pressed) { SHIFTED ? VIM_OPEN_ABOVE() : VIM_OPEN(); }
return false;
case VIM_P:
if (record->event.pressed) { SHIFTED ? VIM_PUT_BEFORE() : VIM_PUT(); }
return false;
case VIM_S:
if (record->event.pressed) { SHIFTED ? VIM_CHANGE_WHOLE_LINE() : VIM_SUBSTITUTE(); }
return false;
case VIM_U:
if (record->event.pressed) { VIM_UNDO(); }
return false;
case VIM_V:
if (record->event.pressed) { VIM_LEADER(VIM_V); }
return false;
case VIM_W:
if (record->event.pressed) {
switch (VIM_QUEUE) {
case KC_NO: VIM_WORD(); break;
case VIM_C: VIM_CHANGE_WORD(); break;
case VIM_CI: VIM_CHANGE_INNER_WORD(); break;
case VIM_D: VIM_DELETE_WORD(); break;
case VIM_DI: VIM_DELETE_INNER_WORD(); break;
case VIM_V: VIM_VISUAL_WORD(); break;
case VIM_VI: VIM_VISUAL_INNER_WORD(); break;
}
}
return false;
case VIM_X:
if (record->event.pressed) { VIM_CUT(); }
return false;
case VIM_Y:
if (record->event.pressed) { SHIFTED ? VIM_YANK_LINE() : VIM_YANK(); }
return false;
// dynamically generate these.
case EPRM:
if (record->event.pressed) { eeconfig_init(); }
return false;
case VRSN:
if (record->event.pressed) { SEND_STRING(VERSION_STRING); }
return false;
case RGB_SLD:
if (record->event.pressed) { rgblight_mode(1); }
return false;
}
// End by clearing the queue unless keycode is a
// if ((record->event.pressed) &&
// (keycode != VIM_I ||
// keycode != VIM_C ||
// keycode != VIM_D ||
// keycode != VIM_V)) {
// VIM_LEADER(KC_NO);
// }
return true;
};
void matrix_init_user(void) {
debug_enable = true;
VIM_LEADER(KC_NO);
};
void matrix_scan_user(void) {
uint8_t layer = biton32(layer_state);
ergodox_board_led_off();
ergodox_right_led_1_off();
ergodox_right_led_2_off();
ergodox_right_led_3_off();
switch (layer) {
case 1:
ergodox_right_led_1_on();
break;
case 2:
ergodox_right_led_2_on();
break;
case 3:
ergodox_right_led_3_on();
break;
case 4:
ergodox_right_led_1_on();
ergodox_right_led_2_on();
break;
case 5:
ergodox_right_led_1_on();
ergodox_right_led_3_on();
break;
case 6:
ergodox_right_led_2_on();
ergodox_right_led_3_on();
break;
case 7:
ergodox_right_led_1_on();
ergodox_right_led_2_on();
ergodox_right_led_3_on();
break;
default:
break;
}
};

View File

@@ -0,0 +1,5 @@
# Vim-like keymap for macOS
This keymap adds vim emulation to the keyboard firmware. Layer 0 is 'normal mode', providing a number of commands like `w`, `e`, `a`, `dw`, etc.
The keymap works by using macOS text-editing shortcuts, so currently it only chooches on macOS.

View File

@@ -0,0 +1 @@
MOUSEKEY_ENABLE = yes

View File

@@ -0,0 +1,756 @@
#include "config.h"
#include "print.h"
#include "keycode.h"
#include "quantum.h"
#include "quantum_keycodes.h"
#define NOR_MOD TO(NORMAL_MODE)
#define INS_MOD TO(INSERT_MODE)
#define PRESS(keycode) register_code16(keycode)
#define RELEASE(keycode) unregister_code16(keycode)
#define PREVENT_STUCK_MODIFIERS
uint16_t VIM_QUEUE = KC_NO;
enum custom_keycodes {
PLACEHOLDER = SAFE_RANGE, // can always be here
VIM_A,
VIM_B,
VIM_C,
VIM_CI,
VIM_D,
VIM_DI,
VIM_E,
VIM_H,
VIM_I,
VIM_J,
VIM_K,
VIM_L,
VIM_O,
VIM_P,
VIM_S,
VIM_U,
VIM_V,
VIM_VI,
VIM_W,
VIM_X,
VIM_Y,
EPRM,
VRSN,
RGB_SLD,
};
void VIM_APPEND(void);
void VIM_APPEND_LINE(void);
void VIM_BACK(void);
void VIM_CHANGE_BACK(void);
void VIM_CHANGE_DOWN(void);
void VIM_CHANGE_END(void);
void VIM_CHANGE_INNER_WORD(void);
void VIM_CHANGE_LEFT(void);
void VIM_CHANGE_LINE(void);
void VIM_CHANGE_RIGHT(void);
void VIM_CHANGE_UP(void);
void VIM_CHANGE_WHOLE_LINE(void);
void VIM_CHANGE_WORD(void);
void VIM_CUT(void);
void VIM_DELETE_BACK(void);
void VIM_DELETE_DOWN(void);
void VIM_DELETE_END(void);
void VIM_DELETE_INNER_WORD(void);
void VIM_DELETE_LEFT(void);
void VIM_DELETE_LINE(void);
void VIM_DELETE_RIGHT(void);
void VIM_DELETE_UP(void);
void VIM_DELETE_WHOLE_LINE(void);
void VIM_DELETE_WORD(void);
void VIM_END(void);
void VIM_JOIN(void);
void VIM_OPEN(void);
void VIM_OPEN_ABOVE(void);
void VIM_PUT(void);
void VIM_SUBSTITUTE(void);
void VIM_UNDO(void);
void VIM_VISUAL_BACK(void);
void VIM_VISUAL_DOWN(void);
void VIM_VISUAL_END(void);
void VIM_VISUAL_INNER_WORD(void);
void VIM_VISUAL_LEFT(void);
void VIM_VISUAL_RIGHT(void);
void VIM_VISUAL_UP(void);
void VIM_VISUAL_WORD(void);
void VIM_WORD(void);
void VIM_YANK(void);
void TAP(uint16_t keycode) {
PRESS(keycode);
RELEASE(keycode);
}
void CMD(uint16_t keycode) {
PRESS(KC_LGUI);
TAP(keycode);
RELEASE(KC_LGUI);
}
void CTRL(uint16_t keycode) {
PRESS(KC_LCTRL);
TAP(keycode);
RELEASE(KC_LCTRL);
}
void SHIFT(uint16_t keycode) {
PRESS(KC_LSHIFT);
TAP(keycode);
RELEASE(KC_LSHIFT);
}
void ALT(uint16_t keycode) {
PRESS(KC_LALT);
TAP(keycode);
RELEASE(KC_LALT);
}
/**
* Sets the `VIM_QUEUE` variable to the incoming keycode.
* Pass `KC_NO` to cancel the operation.
* @param keycode
*/
void VIM_LEADER(uint16_t keycode) {
VIM_QUEUE = keycode;
switch(keycode) {
case VIM_C: print("\e[32mc\e[0m"); break;
case VIM_CI: print("\e[32mi\e[0m"); break;
case VIM_D: print("\e[32md\e[0m"); break;
case VIM_DI: print("\e[32mi\e[0m"); break;
case VIM_V: print("\e[32mv\e[0m"); break;
case VIM_VI: print("\e[32mi\e[0m"); break;
case KC_NO: print(""); break;
}
}
/***
* ####### # # ####### ##### # # ####### #######
* # # ## # # # # # # # # #
* # # # # # # # # # # # #
* # # # # # ##### ##### ####### # # #
* # # # # # # # # # # # #
* # # # ## # # # # # # # #
* ####### # # ####### ##### # # ####### #
*
*/
/**
* Vim-like `append` command.
* Works by sending →.
*/
void VIM_APPEND(void) {
print("\e[31ma\e[0m");
TAP(KC_RIGHT);
layer_on(INSERT_MODE);
}
/**
* Vim-like `back` command
* Simulates vim's `b` command by sending ⌥←
*/
void VIM_BACK(void) {
print("\e[31mb\e[0m");
ALT(KC_LEFT);
}
/**
* Vim-like `cut` command
* Simulates vim's `x` command by sending ⇧→ then ⌘X.
*/
void VIM_CUT(void) {
print("\e[31mx\e[0m");
SHIFT(KC_RIGHT);
CMD(KC_X);
}
/**
* Vim-like `down` command
* Sends ↓
*/
void VIM_DOWN(void) {
print("\e[31mj\e[0m");
TAP(KC_DOWN);
}
/**
* Vim-like `end` command
* Simulates vim's `e` command by sending ⌥→
*/
void VIM_END(void) {
print("\e[31me\e[0m");
ALT(KC_RIGHT);
}
/**
* Vim-like `left` command
* Sends ←
*/
void VIM_LEFT(void) {
print("\e[31mh\e[0m");
VIM_LEADER(KC_NO);
TAP(KC_LEFT);
}
/**
* Vim-like `open` command.
* Works by sending ⌘→ to move to the end of the line, `enter` to open a new line,
* then switching to insert mode.
*/
void VIM_OPEN(void) {
print("\e[31mo\e[0m");
VIM_LEADER(KC_NO);
CMD(KC_RIGHT);
TAP(KC_ENTER);
layer_on(INSERT_MODE);
}
/**
* Vim-like `put` command
* Simulates vim's `p` command by sending ⌘V
*/
void VIM_PUT(void) {
print("\e[31mp\e[0m");
VIM_LEADER(KC_NO);
CMD(KC_V);
}
/**
* Vim-like `put before` command
* Simulates vim's `P` command by sending ↑, ⌘←, then ⌘V
*/
void VIM_PUT_BEFORE(void) {
print("\e[31mP\e[0m");
VIM_LEADER(KC_NO);
TAP(KC_UP);
CMD(KC_LEFT);
CMD(KC_V);
}
/**
* Vim-like `right` command
* Sends →
*/
void VIM_RIGHT(void) {
print("\e[31ml\e[0m");
VIM_LEADER(KC_NO);
TAP(KC_RIGHT);
}
/**
* Vim-like `substitute` command
* Simulates vim's `s` command by sending ⇧→ to select the next character, then
* ⌘X to cut it, then entering insert mode.
*/
void VIM_SUBSTITUTE(void) {
print("\e[31ms\e[0m");
VIM_LEADER(KC_NO);
SHIFT(KC_RIGHT);
CMD(KC_X);
layer_on(INSERT_MODE);
}
/**
* Vim-like `undo` command
* Simulates vim's `u` command by sending ⌘Z
*/
void VIM_UNDO(void) {
print("\e[31mu\e[0m");
VIM_LEADER(KC_NO);
CMD(KC_Z);
}
/**
* Vim-like `up` command
* Sends ↑
*/
void VIM_UP(void) {
print("\e[31mk\e[0m");
VIM_LEADER(KC_NO);
TAP(KC_UP);
}
/**
* Vim-like `word` command
* Simulates vim's `w` command by moving the cursor first to the
* end of the current word, then to the end of the next word,
* then to the beginning of that word.
*/
void VIM_WORD(void) {
print("\e[31mw\e[0m");
VIM_LEADER(KC_NO);
PRESS(KC_LALT);
TAP(KC_RIGHT);
TAP(KC_RIGHT);
TAP(KC_LEFT);
RELEASE(KC_LALT);
}
/**
* Vim-like `yank` command
* Simulates vim's `y` command by sending ⌘C
*/
void VIM_YANK(void) {
print("\e[31my\e[0m");
VIM_LEADER(KC_NO);
CMD(KC_C);
}
/**
* Vim-like `yank line` command
* Simulates vim's `y` command by sending ⌘← then ⇧⌘→ then ⌘C
*/
void VIM_YANK_LINE(void) {
print("\e[31mY\e[0m");
VIM_LEADER(KC_NO);
CMD(KC_LEFT);
PRESS(KC_LSHIFT);
CMD(KC_RIGHT);
RELEASE(KC_LSHIFT);
CMD(KC_C);
}
/***
* ##### # # ### ####### ####### ####### ######
* # # # # # # # # # #
* # # # # # # # # #
* ##### ####### # ##### # ##### # #
* # # # # # # # # #
* # # # # # # # # # #
* ##### # # ### # # ####### ######
*
*/
/**
* Vim-like `append to line` command
* Simulates vim's `A` command by sending ⌘→ then switching to insert mode.
*/
void VIM_APPEND_LINE(void) {
print("\e[31mA\e[0m");
VIM_LEADER(KC_NO);
CMD(KC_RIGHT);
layer_on(INSERT_MODE);
}
/**
* Vim-like `change line` command
* Simulates vim's `C` command by sending ⌃K then switching to insert mode.
*/
void VIM_CHANGE_LINE(void) {
print("\e[31mC\e[0m");
VIM_LEADER(KC_NO);
VIM_DELETE_LINE();
layer_on(INSERT_MODE);
}
/**
* Vim-like 'delete line' command
* Simulates vim's `D` command by sending ⌃K to kill the line
*/
void VIM_DELETE_LINE(void) {
print("\e[31mD\e[0m");
VIM_LEADER(KC_NO);
CTRL(KC_K);
}
/**
* Vim-like 'join lines' command
* Simulates vim's `J` command by sending ⌘→ to go to the end of the line, then
* DELETE to join the lines
*/
void VIM_JOIN(void) {
print("\e[31mJ\e[0m");
VIM_LEADER(KC_NO);
CMD(KC_RIGHT);
TAP(KC_DELETE);
VIM_LEADER(KC_NO);
}
/**
* Vim-like 'open above' command
* Simulates vim's `O` command by sending ⌘→ to go to the start of the line,
* enter to move the line down, ↑ to move up to the new line, then switching to
* insert mode.
*/
void VIM_OPEN_ABOVE(void) {
print("\e[31mO\e[0m");
VIM_LEADER(KC_NO);
CMD(KC_LEFT);
TAP(KC_ENTER);
TAP(KC_UP);
layer_on(INSERT_MODE);
}
/**
* Vim-like 'change whole line' command
* Simulates vim's `S` `cc` or `c$` commands by sending ⌘← to go to the start of the line,
* ⌃K to kill the line, then switching to insert mode.
*/
void VIM_CHANGE_WHOLE_LINE(void) {
print("\e[31mS\e[0m");
VIM_LEADER(KC_NO);
CMD(KC_LEFT);
VIM_CHANGE_LINE();
}
/***
* ###### ###### ###### ####### ####### ### # # ####### ######
* # # # # # # # # # # # # # #
* # # # # # # # # # # # # # #
* # # ###### ###### ##### ##### # # ##### # #
* # # # # # # # # # # # # #
* # # # # # # # # # # # # #
* ###### # # # ####### # ### # # ####### ######
*
*/
/**
* Vim-like `delete to end` command
* Simulates vim's `de` command by sending ⌥⇧→ then ⌘X.
*/
void VIM_DELETE_END(void) {
print("\e[31me\e[0m");
VIM_LEADER(KC_NO);
PRESS(KC_LALT);
SHIFT(KC_RIGHT); // select to end of this word
RELEASE(KC_LALT);
CMD(KC_X);
}
/**
* Vim-like `delete whole line` command
* Simulates vim's `dd` command by sending ⌘← to move to start of line,
* selecting the whole line, then sending ⌘X to cut the line.
* alternate method: ⌘⌫, ⌃K
*/
void VIM_DELETE_WHOLE_LINE(void) {
print("\e[31md\e[0m");
VIM_LEADER(KC_NO);
CMD(KC_LEFT);
PRESS(KC_LSHIFT);
CMD(KC_RIGHT);
RELEASE(KC_LSHIFT);
CMD(KC_X);
}
/**
* Vim-like `delete word` command
* Simulates vim's `dw` command by sending ⌥⇧→→← then ⌘X to select to the start
* of the next word then cut.
*/
void VIM_DELETE_WORD(void) {
print("\e[31mw\e[0m");
VIM_LEADER(KC_NO);
PRESS(KC_LALT);
SHIFT(KC_RIGHT); // select to end of this word
SHIFT(KC_RIGHT); // select to end of next word
SHIFT(KC_LEFT); // select to start of next word
RELEASE(KC_LALT);
CMD(KC_X); // delete selection
}
/**
* Vim-like `delete back` command
* Simulates vim's `db` command by selecting to the end of the word then deleting.
*/
void VIM_DELETE_BACK(void) {
print("\e[31mb\e[0m");
VIM_LEADER(KC_NO);
PRESS(KC_LALT);
SHIFT(KC_LEFT); // select to start of word
SHIFT(KC_DEL); // delete selection
RELEASE(KC_LSHIFT);
}
/**
* Vim-like `delete left` command
* Simulates vim's `dh` command by sending ⇧← then ⌘X.
*/
void VIM_DELETE_LEFT(void) {
print("\e[31mh\e[0m");
VIM_LEADER(KC_NO);
SHIFT(KC_LEFT);
CMD(KC_X);
}
/**
* Vim-like `delete right` command
* Simulates vim's `dl` command by sending ⇧→ then ⌘X.
*/
void VIM_DELETE_RIGHT(void) {
print("\e[31ml\e[0m");
VIM_LEADER(KC_NO);
SHIFT(KC_RIGHT);
CMD(KC_X);
}
/**
* Vim-like `delete up` command
* Simulates vim's `dk` command by sending ↑ then deleting the line.
*/
void VIM_DELETE_UP(void) {
print("\e[31mk\e[0m");
VIM_LEADER(KC_NO);
TAP(KC_UP);
VIM_DELETE_LINE();
}
/**
* Vim-like `delete down` command
* Simulates vim's `dj` command by sending ↓ then deleting the line.
*/
void VIM_DELETE_DOWN(void) {
print("\e[31mj\e[0m");
VIM_LEADER(KC_NO);
TAP(KC_DOWN);
VIM_DELETE_LINE();
}
/***
* ###### ### ###### ###### ####### ####### ### # # ####### ######
* # # # # # # # # # # # # # # #
* # # # # # # # # # # # # # # #
* # # # ###### ###### ##### ##### # # ##### # #
* # # # # # # # # # # # # # #
* # # # # # # # # # # # # # #
* ###### ### # # # ####### # ### # # ####### ######
*
*/
/**
* Vim-like `delete inner word` command
* Simulates vim's `diw` command by moving back then cutting to the end of the word.
*/
void VIM_DELETE_INNER_WORD(void) {
print("\e[31mw\e[0m");
VIM_LEADER(KC_NO);
VIM_BACK();
VIM_DELETE_END();
}
/***
* ##### ###### ###### ####### ####### ### # # ####### ######
* # # # # # # # # # # # # # #
* # # # # # # # # # # # # #
* # ###### ###### ##### ##### # # ##### # #
* # # # # # # # # # # # #
* # # # # # # # # # # # # #
* ##### # # # ####### # ### # # ####### ######
*
*/
/**
* Vim-like `change back` command
* Simulates vim's `cb` command by first deleting to the start of the word,
* then switching to insert mode.
*/
void VIM_CHANGE_BACK(void) {
print("\e[31mb\e[0m");
VIM_LEADER(KC_NO);
VIM_DELETE_BACK();
layer_on(INSERT_MODE);
}
/**
* Vim-like `change down` command
* Simulates vim's `cj` command by sending ↓ then changing the line.
*/
void VIM_CHANGE_DOWN(void) {
print("\e[31mj\e[0m");
VIM_LEADER(KC_NO);
VIM_DELETE_DOWN();
layer_on(INSERT_MODE);
}
/**
* Vim-like `change to end` command
* Simulates vim's `ce` command by first deleting to the end of the word,
* then switching to insert mode.
*/
void VIM_CHANGE_END(void) {
print("\e[31mce\e[0m");
VIM_LEADER(KC_NO);
VIM_DELETE_END();
layer_on(INSERT_MODE);
}
/**
* Vim-like `change left` command
* Simulates vim's `ch` command by deleting left then switching to insert mode.
*/
void VIM_CHANGE_LEFT(void) {
print("\e[31mch\e[0m");
VIM_LEADER(KC_NO);
VIM_DELETE_LEFT();
layer_on(INSERT_MODE);
}
/**
* Vim-like `change right` command
* Simulates vim's `cl` command by deleting right then switching to insert mode.
*/
void VIM_CHANGE_RIGHT(void) {
print("\e[31mcl\e[0m");
VIM_DELETE_RIGHT();
layer_on(INSERT_MODE);
}
/**
* Vim-like `change up` command
* Simulates vim's `ck` command by deleting up then switching to insert mode.
*/
void VIM_CHANGE_UP(void) {
print("\e[31mck\e[0m");
VIM_DELETE_UP();
layer_on(INSERT_MODE);
}
/**
* Vim-like `change word` command
* Simulates vim's `cw` command by first deleting to the end of the word,
* then switching to insert mode.
*/
void VIM_CHANGE_WORD(void) {
print("\e[31mcw\e[0m");
VIM_LEADER(KC_NO);
VIM_DELETE_WORD();
layer_on(INSERT_MODE);
}
/***
* ##### ### ###### ###### ####### ####### ### # # ####### ######
* # # # # # # # # # # # # # # #
* # # # # # # # # # # # # # #
* # # ###### ###### ##### ##### # # ##### # #
* # # # # # # # # # # # # #
* # # # # # # # # # # # # # #
* ##### ### # # # ####### # ### # # ####### ######
*
*/
/**
* Vim-like `change inner word` command
* Simulates vim's `ciw` command by deleting the inner word then switching to insert mode.
*/
void VIM_CHANGE_INNER_WORD(void) {
print("\e[31mciw\e[0m");
VIM_DELETE_INNER_WORD();
layer_on(INSERT_MODE);
}
/***
* # # ###### ###### ####### ####### ### # # ####### ######
* # # # # # # # # # # # # # #
* # # # # # # # # # # # # # #
* # # ###### ###### ##### ##### # # ##### # #
* # # # # # # # # # # # # #
* # # # # # # # # # # # # #
* # # # # ####### # ### # # ####### ######
*
*/
/**
* Vim-like `visual select back` command
* Simulates vim's `vb` command by selecting to the enc of the word.
*/
void VIM_VISUAL_BACK(void) {
print("\e[31mvb\e[0m");
VIM_LEADER(KC_NO);
PRESS(KC_LALT);
SHIFT(KC_LEFT); // select to start of word
RELEASE(KC_LALT);
}
/**
* Vim-like `visual select to end` command
* Simulates vim's `ve` command by selecting to the end of the word.
*/
void VIM_VISUAL_END(void) {
print("\e[31mve\e[0m");
VIM_LEADER(KC_NO);
PRESS(KC_LALT);
SHIFT(KC_RIGHT); // select to end of this word
RELEASE(KC_LALT);
}
/**
* Vim-like `visual select word` command
* Simulates vim's `vw` command by selecting to the end of the word.
*/
void VIM_VISUAL_WORD(void) {
print("\e[31mvw\e[0m");
VIM_LEADER(KC_NO);
PRESS(KC_LALT);
SHIFT(KC_RIGHT); // select to end of this word
SHIFT(KC_RIGHT); // select to end of next word
SHIFT(KC_LEFT); // select to start of next word
RELEASE(KC_LALT);
}
/**
* Vim-like `visual left` command
* Simulates vim's `vh` command by sending ⇧←.
*/
void VIM_VISUAL_LEFT(void) {
print("\e[31mvh\e[0m");
VIM_LEADER(KC_NO);
SHIFT(KC_LEFT);
}
/**
* Vim-like `visual right` command
* Simulates vim's `vl` command by sending ⇧→.
*/
void VIM_VISUAL_RIGHT(void) {
print("\e[31mvl\e[0m");
VIM_LEADER(KC_NO);
SHIFT(KC_RIGHT);
}
/**
* Vim-like `visual up` command
* Simulates vim's `vk` command by sending ⇧↑.
*/
void VIM_VISUAL_UP(void) {
print("\e[31mvk\e[0m");
VIM_LEADER(KC_NO);
SHIFT(KC_UP);
}
/**
* Vim-like `visual down` command
* Simulates vim's `vj` command by sending ⇧↓.
*/
void VIM_VISUAL_DOWN(void) {
print("\e[31mdj\e[0m");
VIM_LEADER(KC_NO);
SHIFT(KC_DOWN);
}
/***
* # # ### ###### ###### ####### ####### ### # # ####### ######
* # # # # # # # # # # # # # # #
* # # # # # # # # # # # # # # #
* # # # ###### ###### ##### ##### # # ##### # #
* # # # # # # # # # # # # # #
* # # # # # # # # # # # # # #
* # ### # # # ####### # ### # # ####### ######
*
*/
/**
* Vim-like `visual inner word` command
* Simulates vim's `viw` command by moving back then selecting to the end of the word.
*/
void VIM_VISUAL_INNER_WORD(void) {
print("\e[31mviw\e[0m");
VIM_LEADER(KC_NO);
VIM_BACK();
VIM_VISUAL_END();
}

View File

@@ -326,17 +326,9 @@ static matrix_row_t read_cols(uint8_t row)
*/
static void unselect_rows(void)
{
// unselect on mcp23018
if (mcp23018_status) { // if there was an error
// do nothing
} else {
// set all rows hi-Z : 1
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(GPIOA); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0xFF); if (mcp23018_status) goto out;
out:
i2c_stop();
}
// no need to unselect on mcp23018, because the select step sets all
// the other row bits high, and it's not changing to a different
// direction
// unselect on teensy
// Hi-Z(DDR:0, PORT:0) to unselect

View File

@@ -25,6 +25,17 @@ Thread on Geekhack: https://geekhack.org/index.php?topic=88439.0
Also: https://geekhack.org/index.php?topic=88720.0
Actuation Point adjustment
--------------------------
You can adjust the actuation point of the keys by setting `ACTUATION_DEPTH_ADJUSTMENT` in `config.h`.
A value above 0 will result in a deeper, less sensitive actuation whereas a value above 1 will result in a more shallow, more sensitive actuation.
Be careful with this setting and use small values (+/-5).
See the `actuation-point-example` keymap of the `fc980c` keyboard for an example.
For more information, inspect the `fc660c_i2c` branch of TMK [here](https://github.com/tmk/tmk_keyboard/tree/fc660c_i2c).
Functionality for writing to the EEPROM has deliberately not been included to reduce the chance of people messing up their boards.
Pinouts
-------

View File

@@ -0,0 +1,87 @@
/*
Copyright 2017 Balz Guenat
based on work by Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "actuation_point.h"
#include "i2c.h"
///////////////////////////////////////////////////////////////////////////////
//
// AD5258 I2C digital potentiometer
// http://www.analog.com/media/en/technical-documentation/data-sheets/AD5258.pdf
//
#define AD5258_ADDR 0b0011000
#define AD5258_INST_RDAC 0x00
#define AD5258_INST_EEPROM 0x20
uint8_t read_rdac(void) {
// read RDAC register
i2c_start_write(AD5258_ADDR);
i2c_master_write(AD5258_INST_RDAC);
i2c_start_read(AD5258_ADDR);
uint8_t ret = i2c_master_read(I2C_NACK);
i2c_master_stop();
return ret;
};
uint8_t read_eeprom(void) {
i2c_start_write(AD5258_ADDR);
i2c_master_write(AD5258_INST_EEPROM);
i2c_start_read(AD5258_ADDR);
uint8_t ret = i2c_master_read(I2C_NACK);
i2c_master_stop();
return ret;
};
void write_rdac(uint8_t rdac) {
// write RDAC register:
i2c_start_write(AD5258_ADDR);
i2c_master_write(AD5258_INST_RDAC);
i2c_master_write(rdac & 0x3F);
i2c_master_stop();
};
void actuation_point_up(void) {
// write RDAC register: lower value makes actuation point shallow
uint8_t rdac = read_rdac();
if (rdac == 0)
write_rdac(0);
else
write_rdac(rdac-1);
};
void actuation_point_down(void) {
// write RDAC register: higher value makes actuation point deep
uint8_t rdac = read_rdac();
if (rdac == 63)
write_rdac(63);
else
write_rdac(rdac+1);
};
void adjust_actuation_point(int offset) {
i2c_master_init();
uint8_t rdac = read_eeprom() + offset;
if (rdac > 63) { // protects from under and overflows
if (offset > 0)
write_rdac(63);
else
write_rdac(0);
} else {
write_rdac(rdac);
}
}

View File

@@ -0,0 +1,32 @@
/*
Copyright 2017 Balz Guenat
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ACTUATION_POINT_H
#define ACTUATION_POINT_H
#include <stdint.h>
// see keymaps/actuation-point-example to see how these functions can be used.
uint8_t read_rdac(void);
uint8_t read_eeprom(void);
void actuation_point_up(void);
void actuation_point_down(void);
// be careful with this.
void adjust_actuation_point(int offset);
#endif

View File

@@ -64,6 +64,8 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
* These options are also useful to firmware size reduction.
*/
#define USE_I2C
/* disable debug print */
//#define NO_DEBUG
@@ -77,4 +79,11 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION
// higher value means deeper actuation point, less sensitive
// be careful and only make small adjustments (steps of 1 or 2).
// too high and keys will fail to actuate. too low and keys will actuate spontaneously.
// test all keys before further adjustment.
// this should probably stay in the range +/-5.
// #define ACTUATION_DEPTH_ADJUSTMENT 0
#endif

View File

@@ -16,10 +16,18 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "fc660c.h"
#ifdef ACTUATION_DEPTH_ADJUSTMENT
#include "actuation_point.h"
#endif
void matrix_init_kb(void) {
// put your keyboard start-up code here
// runs once when the firmware starts up
#ifdef ACTUATION_DEPTH_ADJUSTMENT
adjust_actuation_point(ACTUATION_DEPTH_ADJUSTMENT);
#endif
matrix_init_user();
}

162
keyboards/fc660c/i2c.c Normal file
View File

@@ -0,0 +1,162 @@
#include <util/twi.h>
#include <avr/io.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include <util/twi.h>
#include <stdbool.h>
#include "i2c.h"
#ifdef USE_I2C
// Limits the amount of we wait for any one i2c transaction.
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
// 9 bits, a single transaction will take around 90μs to complete.
//
// (F_CPU/SCL_CLOCK) => # of μC cycles to transfer a bit
// poll loop takes at least 8 clock cycles to execute
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8
#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)
volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
static volatile uint8_t slave_buffer_pos;
static volatile bool slave_has_register_set = false;
// Wait for an i2c operation to finish
inline static
void i2c_delay(void) {
uint16_t lim = 0;
while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
lim++;
// easier way, but will wait slightly longer
// _delay_us(100);
}
// Setup twi to run at 100kHz
void i2c_master_init(void) {
// no prescaler
TWSR = 0;
// Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
// Check datasheets for more info.
TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
}
// Start a transaction with the given i2c slave address. The direction of the
// transfer is set with I2C_READ and I2C_WRITE.
// returns: 0 => success
// 1 => error
uint8_t i2c_master_start(uint8_t address) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);
i2c_delay();
// check that we started successfully
if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
return 1;
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
return 1; // slave did not acknowledge
else
return 0; // success
}
// Finish the i2c transaction.
void i2c_master_stop(void) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
uint16_t lim = 0;
while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
lim++;
}
// Write one byte to the i2c slave.
// returns 0 => slave ACK
// 1 => slave NACK
uint8_t i2c_master_write(uint8_t data) {
TWDR = data;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
// check if the slave acknowledged us
return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
}
// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
// if ack=0 the acknowledge bit is not set.
// returns: byte read from i2c device
uint8_t i2c_master_read(int ack) {
TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);
i2c_delay();
return TWDR;
}
void i2c_reset_state(void) {
TWCR = 0;
}
void i2c_slave_init(uint8_t address) {
TWAR = address << 0; // slave i2c address
// TWEN - twi enable
// TWEA - enable address acknowledgement
// TWINT - twi interrupt flag
// TWIE - enable the twi interrupt
TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
}
ISR(TWI_vect);
ISR(TWI_vect) {
uint8_t ack = 1;
switch(TW_STATUS) {
case TW_SR_SLA_ACK:
// this device has been addressed as a slave receiver
slave_has_register_set = false;
break;
case TW_SR_DATA_ACK:
// this device has received data as a slave receiver
// The first byte that we receive in this transaction sets the location
// of the read/write location of the slaves memory that it exposes over
// i2c. After that, bytes will be written at slave_buffer_pos, incrementing
// slave_buffer_pos after each write.
if(!slave_has_register_set) {
slave_buffer_pos = TWDR;
// don't acknowledge the master if this memory loctaion is out of bounds
if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
ack = 0;
slave_buffer_pos = 0;
}
slave_has_register_set = true;
} else {
i2c_slave_buffer[slave_buffer_pos] = TWDR;
BUFFER_POS_INC();
}
break;
case TW_ST_SLA_ACK:
case TW_ST_DATA_ACK:
// master has addressed this device as a slave transmitter and is
// requesting data.
TWDR = i2c_slave_buffer[slave_buffer_pos];
BUFFER_POS_INC();
break;
case TW_BUS_ERROR: // something went wrong, reset twi state
TWCR = 0;
default:
break;
}
// Reset everything, so we are ready for the next TWI interrupt
TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
}
#endif

49
keyboards/fc660c/i2c.h Normal file
View File

@@ -0,0 +1,49 @@
#ifndef I2C_H
#define I2C_H
#include <stdint.h>
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
#define I2C_READ 1
#define I2C_WRITE 0
#define I2C_ACK 1
#define I2C_NACK 0
#define SLAVE_BUFFER_SIZE 0x10
// i2c SCL clock frequency
#define SCL_CLOCK 400000L
extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
void i2c_master_init(void);
uint8_t i2c_master_start(uint8_t address);
void i2c_master_stop(void);
uint8_t i2c_master_write(uint8_t data);
uint8_t i2c_master_read(int);
void i2c_reset_state(void);
void i2c_slave_init(uint8_t address);
static inline unsigned char i2c_start_read(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_READ);
}
static inline unsigned char i2c_start_write(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_WRITE);
}
// from SSD1306 scrips
extern unsigned char i2c_rep_start(unsigned char addr);
extern void i2c_start_wait(unsigned char addr);
extern unsigned char i2c_readAck(void);
extern unsigned char i2c_readNak(void);
extern unsigned char i2c_read(unsigned char ack);
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak();
#endif

View File

@@ -21,7 +21,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#include <util/delay.h>
#include "wait.h"
#include "print.h"
#include "debug.h"
#include "util.h"

View File

@@ -61,4 +61,6 @@ NKRO_ENABLE ?= yes # USB Nkey Rollover - not yet supported in LUFA
#EXTRALDFLAGS = -Wl,--relax
CUSTOM_MATRIX = yes
SRC += matrix.c
SRC += matrix.c \
actuation_point.c \
i2c.c

View File

@@ -32,6 +32,16 @@ The keyboard is very similar electronically to its sibling model FC660C you can
FC660C Alt Controller: https://geekhack.org/index.php?topic=88439.0
Actuation Point adjustment
--------------------------
You can adjust the actuation point of the keys by setting `ACTUATION_DEPTH_ADJUSTMENT` in `config.h`.
A value above 0 will result in a deeper, less sensitive actuation whereas a value above 1 will result in a more shallow, more sensitive actuation.
Be careful with this setting and use small values (+/-5).
See the `actuation-point-example` keymap for an example.
For more information, inspect the `fc660c_i2c` branch of TMK [here](https://github.com/tmk/tmk_keyboard/tree/fc660c_i2c).
Functionality for writing to the EEPROM has deliberately not been included to reduce the chance of people messing up their boards.
Hardware
--------
This project uses common and familiar ATmega32u4 but any microcontroller with 5V I/O will work.

View File

@@ -0,0 +1,87 @@
/*
Copyright 2017 Balz Guenat
based on work by Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "actuation_point.h"
#include "i2c.h"
///////////////////////////////////////////////////////////////////////////////
//
// AD5258 I2C digital potentiometer
// http://www.analog.com/media/en/technical-documentation/data-sheets/AD5258.pdf
//
#define AD5258_ADDR 0b0011000
#define AD5258_INST_RDAC 0x00
#define AD5258_INST_EEPROM 0x20
uint8_t read_rdac(void) {
// read RDAC register
i2c_start_write(AD5258_ADDR);
i2c_master_write(AD5258_INST_RDAC);
i2c_start_read(AD5258_ADDR);
uint8_t ret = i2c_master_read(I2C_NACK);
i2c_master_stop();
return ret;
};
uint8_t read_eeprom(void) {
i2c_start_write(AD5258_ADDR);
i2c_master_write(AD5258_INST_EEPROM);
i2c_start_read(AD5258_ADDR);
uint8_t ret = i2c_master_read(I2C_NACK);
i2c_master_stop();
return ret;
};
void write_rdac(uint8_t rdac) {
// write RDAC register:
i2c_start_write(AD5258_ADDR);
i2c_master_write(AD5258_INST_RDAC);
i2c_master_write(rdac & 0x3F);
i2c_master_stop();
};
void actuation_point_up(void) {
// write RDAC register: lower value makes actuation point shallow
uint8_t rdac = read_rdac();
if (rdac == 0)
write_rdac(0);
else
write_rdac(rdac-1);
};
void actuation_point_down(void) {
// write RDAC register: higher value makes actuation point deep
uint8_t rdac = read_rdac();
if (rdac == 63)
write_rdac(63);
else
write_rdac(rdac+1);
};
void adjust_actuation_point(int offset) {
i2c_master_init();
uint8_t rdac = read_eeprom() + offset;
if (rdac > 63) { // protects from under and overflows
if (offset > 0)
write_rdac(63);
else
write_rdac(0);
} else {
write_rdac(rdac);
}
}

View File

@@ -0,0 +1,32 @@
/*
Copyright 2017 Balz Guenat
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ACTUATION_POINT_H
#define ACTUATION_POINT_H
#include <stdint.h>
// see keymaps/actuation-point-example to see how these functions can be used.
uint8_t read_rdac(void);
uint8_t read_eeprom(void);
void actuation_point_up(void);
void actuation_point_down(void);
// be careful with this.
void adjust_actuation_point(int offset);
#endif

View File

@@ -68,6 +68,8 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
* These options are also useful to firmware size reduction.
*/
#define USE_I2C
/* disable debug print */
//#define NO_DEBUG
@@ -81,4 +83,11 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION
// higher value means deeper actuation point, less sensitive
// be careful and only make small adjustments (steps of 1 or 2).
// too high and keys will fail to actuate. too low and keys will actuate spontaneously.
// test all keys before further adjustment.
// this should probably stay in the range +/-5.
// #define ACTUATION_DEPTH_ADJUSTMENT 0
#endif

View File

@@ -14,12 +14,21 @@ GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "fc980c.h"
#ifdef ACTUATION_DEPTH_ADJUSTMENT
#include "actuation_point.h"
#endif
void matrix_init_kb(void) {
// put your keyboard start-up code here
// runs once when the firmware starts up
#ifdef ACTUATION_DEPTH_ADJUSTMENT
adjust_actuation_point(ACTUATION_DEPTH_ADJUSTMENT);
#endif
matrix_init_user();
}

162
keyboards/fc980c/i2c.c Normal file
View File

@@ -0,0 +1,162 @@
#include <util/twi.h>
#include <avr/io.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include <util/twi.h>
#include <stdbool.h>
#include "i2c.h"
#ifdef USE_I2C
// Limits the amount of we wait for any one i2c transaction.
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
// 9 bits, a single transaction will take around 90μs to complete.
//
// (F_CPU/SCL_CLOCK) => # of μC cycles to transfer a bit
// poll loop takes at least 8 clock cycles to execute
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8
#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)
volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
static volatile uint8_t slave_buffer_pos;
static volatile bool slave_has_register_set = false;
// Wait for an i2c operation to finish
inline static
void i2c_delay(void) {
uint16_t lim = 0;
while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
lim++;
// easier way, but will wait slightly longer
// _delay_us(100);
}
// Setup twi to run at 100kHz
void i2c_master_init(void) {
// no prescaler
TWSR = 0;
// Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
// Check datasheets for more info.
TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
}
// Start a transaction with the given i2c slave address. The direction of the
// transfer is set with I2C_READ and I2C_WRITE.
// returns: 0 => success
// 1 => error
uint8_t i2c_master_start(uint8_t address) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);
i2c_delay();
// check that we started successfully
if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
return 1;
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
return 1; // slave did not acknowledge
else
return 0; // success
}
// Finish the i2c transaction.
void i2c_master_stop(void) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
uint16_t lim = 0;
while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
lim++;
}
// Write one byte to the i2c slave.
// returns 0 => slave ACK
// 1 => slave NACK
uint8_t i2c_master_write(uint8_t data) {
TWDR = data;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
// check if the slave acknowledged us
return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
}
// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
// if ack=0 the acknowledge bit is not set.
// returns: byte read from i2c device
uint8_t i2c_master_read(int ack) {
TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);
i2c_delay();
return TWDR;
}
void i2c_reset_state(void) {
TWCR = 0;
}
void i2c_slave_init(uint8_t address) {
TWAR = address << 0; // slave i2c address
// TWEN - twi enable
// TWEA - enable address acknowledgement
// TWINT - twi interrupt flag
// TWIE - enable the twi interrupt
TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
}
ISR(TWI_vect);
ISR(TWI_vect) {
uint8_t ack = 1;
switch(TW_STATUS) {
case TW_SR_SLA_ACK:
// this device has been addressed as a slave receiver
slave_has_register_set = false;
break;
case TW_SR_DATA_ACK:
// this device has received data as a slave receiver
// The first byte that we receive in this transaction sets the location
// of the read/write location of the slaves memory that it exposes over
// i2c. After that, bytes will be written at slave_buffer_pos, incrementing
// slave_buffer_pos after each write.
if(!slave_has_register_set) {
slave_buffer_pos = TWDR;
// don't acknowledge the master if this memory loctaion is out of bounds
if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
ack = 0;
slave_buffer_pos = 0;
}
slave_has_register_set = true;
} else {
i2c_slave_buffer[slave_buffer_pos] = TWDR;
BUFFER_POS_INC();
}
break;
case TW_ST_SLA_ACK:
case TW_ST_DATA_ACK:
// master has addressed this device as a slave transmitter and is
// requesting data.
TWDR = i2c_slave_buffer[slave_buffer_pos];
BUFFER_POS_INC();
break;
case TW_BUS_ERROR: // something went wrong, reset twi state
TWCR = 0;
default:
break;
}
// Reset everything, so we are ready for the next TWI interrupt
TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
}
#endif

49
keyboards/fc980c/i2c.h Normal file
View File

@@ -0,0 +1,49 @@
#ifndef I2C_H
#define I2C_H
#include <stdint.h>
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
#define I2C_READ 1
#define I2C_WRITE 0
#define I2C_ACK 1
#define I2C_NACK 0
#define SLAVE_BUFFER_SIZE 0x10
// i2c SCL clock frequency
#define SCL_CLOCK 400000L
extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
void i2c_master_init(void);
uint8_t i2c_master_start(uint8_t address);
void i2c_master_stop(void);
uint8_t i2c_master_write(uint8_t data);
uint8_t i2c_master_read(int);
void i2c_reset_state(void);
void i2c_slave_init(uint8_t address);
static inline unsigned char i2c_start_read(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_READ);
}
static inline unsigned char i2c_start_write(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_WRITE);
}
// from SSD1306 scrips
extern unsigned char i2c_rep_start(unsigned char addr);
extern void i2c_start_wait(unsigned char addr);
extern unsigned char i2c_readAck(void);
extern unsigned char i2c_readNak(void);
extern unsigned char i2c_read(unsigned char ack);
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak();
#endif

View File

@@ -0,0 +1,9 @@
# Actuation Point adjustment example keymap
This keymap is an example of how the actuation point adjustment functionality could be used. In `config.h`, we set `ACTUATION_DEPTH_ADJUSTMENT` to `+1`, which puts the actuation point slightly deeper, making the keys less sensitive.
If [hid_listen](https://www.pjrc.com/teensy/hid_listen.html) is running, `CAPS_LOCK + F9` prints the current RDAC setting and `CAPS_LOCK + F10` prints the default or base setting. `CAPS_LOCK + F11` and `CAPS_LOCK + F12` can be used to adjust the actuation point dynamically. Make only small adjustments and find your ideal setting. For example, if the base setting of your keyboard is 56 but you prefer a slightly lower actuation point at 58, you should set `ACTUATION_DEPTH_ADJUSTMENT` to `+2`.
If something goes wrong during adjustment, for example keys not actuating anymore or actuating spontaneously, don't panic. Just unplug the keyboard and plug it back in. This will revert all your dynamic changes made with `F11` and `F12`.
If you discover you have set a too high or low value for `ACTUATION_DEPTH_ADJUSTMENT`, you will need to recompile and reflash your keyboard.

View File

@@ -0,0 +1,32 @@
/* Copyright 2017 Balz Guenat
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CONFIG_USER_H
#define CONFIG_USER_H
#include "config_common.h"
// place overrides here
// higher value means deeper actuation point, less sensitive
// be careful and only make small adjustments (steps of 1 or 2).
// too high and keys will fail to actuate. too low and keys will actuate spontaneously.
// test all keys before further adjustment.
// this should probably stay in the range +/-5.
#undef ACTUATION_DEPTH_ADJUSTMENT
#define ACTUATION_DEPTH_ADJUSTMENT +1
#endif

View File

@@ -0,0 +1,77 @@
/*
Copyright 2017 Balz Guenat
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "fc980c.h"
#include "actuation_point.h"
enum custom_keycodes {
AP_UP = SAFE_RANGE, // Higher actuation point, more sensitive
AP_DN, // Lower actuation point, less sensitive
AP_READ_RDAC, // Prints current RDAC value to console
AP_READ_EEPROM, // Prints base RDAC value to console
};
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[0] = KEYMAP(
KC_ESC, KC_F1,KC_F2,KC_F3,KC_F4,KC_F5,KC_F6,KC_F7,KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, KC_DEL, KC_INS, KC_PGUP,KC_PGDN,
KC_GRV, KC_1,KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS,KC_EQL, KC_BSPC, KC_NLCK,KC_PSLS,KC_PAST,KC_PMNS,
KC_TAB, KC_Q,KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_LBRC,KC_RBRC,KC_BSLS, KC_P7, KC_P8, KC_P9, KC_PPLS,
MO(1) , KC_A,KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN,KC_QUOT, KC_ENT, KC_P4, KC_P5, KC_P6,
KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM,KC_DOT, KC_SLSH, KC_RSFT, KC_UP, KC_P1, KC_P2, KC_P3, KC_PENT,
KC_LCTL,KC_LGUI,KC_LALT, KC_SPC, KC_RALT,KC_RCTL,MO(1), KC_LEFT,KC_DOWN,KC_RGHT, KC_P0, KC_PDOT
),
[1] = KEYMAP(
_______, _______,_______,_______,_______,_______,_______, _______, _______,AP_READ_RDAC,AP_READ_EEPROM,AP_DN,AP_UP, _______,_______,KC_HOME,KC_END,
_______,_______,_______,_______,_______,_______,_______,_______, _______, _______,_______,_______,_______,_______, _______,_______,_______,_______,
KC_CAPS,KC_MPRV,KC_VOLU,KC_MNXT,KC_PGUP,KC_INS,KC_HOME, LCTL(KC_LEFT),LCTL(KC_RGHT),KC_END, KC_PSCR,KC_SLCK,KC_PAUS,_______, _______,_______,_______,_______,
_______,KC_MUTE,KC_VOLD,KC_MPLY,KC_PGDN,KC_DEL,KC_LEFT, KC_DOWN, KC_UP, KC_RGHT,_______,_______, _______, _______,_______,_______,
_______, _______,_______,_______,_______,_______,LCTL(KC_BSPC),LCTL(KC_DEL), _______,_______,_______, _______, KC_PGUP, _______,_______,_______,_______,
_______,_______,_______, _______, _______,KC_APP, _______, KC_HOME,KC_PGDN,KC_END, _______,_______
),
};
void matrix_init_user(void) {
};
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
if (record->event.pressed) {
switch(keycode) {
case AP_UP: {
actuation_point_up();
return false;
}
case AP_DN: {
actuation_point_down();
return false;
}
case AP_READ_RDAC: {
xprintf("RDAC: %d", read_rdac());
return false;
}
case AP_READ_EEPROM: {
xprintf("EEPROM: %d", read_eeprom());
return false;
}
default: return true;
}
} else {
return true;
}
};
const uint16_t PROGMEM fn_actions[] = {
};

View File

@@ -21,4 +21,12 @@
// place overrides here
// higher value means deeper actuation point, less sensitive
// be careful and only make small adjustments (steps of 1 or 2).
// too high and keys will fail to actuate. too low and keys will actuate spontaneously.
// test all keys before further adjustment.
// this should probably stay in the range +/-5.
#undef ACTUATION_DEPTH_ADJUSTMENT
#define ACTUATION_DEPTH_ADJUSTMENT +2
#endif

View File

@@ -21,7 +21,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#include <util/delay.h>
#include "wait.h"
#include "print.h"
#include "debug.h"
#include "util.h"

Some files were not shown because too many files have changed in this diff Show More